1 |
Is Plant Fitness Proportional to Seed Set? An Experiment and a Spatial ModelCampbell, Diane R., Brody, Alison K., Price, Mary V., Waser, Nickolas M., Aldridge, George 12 1900 (has links)
Individual differences in fecundity often serve as proxies for differences in overall fitness, especially when it is difficult to track the fate of an individual's offspring to reproductive maturity. Using fecundity may be biased, however, if density-dependent interactions between siblings affect survival and reproduction of offspring from high- and low-fecundity parents differently. To test for such density-dependent effects in plants, we sowed seeds of the wildflower Ipomopsis aggregata (scarlet gilia) to mimic partially overlapping seed shadows of pairs of plants, one of which produced twice as many seeds. We tested for differences in offspring success using a genetic marker to track offspring to flowering multiple years later. Without density dependence, the high-fecundity parent should produce twice as many surviving offspring. We also developed a model that considered the geometry of seed shadows and assumed limited survivors so that the number of juvenile recruits is proportional to the area. Rather than a ratio of 2:1 offspring success from high- versus low-fecundity parents, our model predicted a ratio of 1.42:1, which would translate into weaker selection. Empirical ratios of juvenile offspring and of flowers produced conformed well to the model's prediction. Extending the model shows how spatial relationships of parents and seed dispersal patterns modify inferences about relative fitness based solely on fecundity.
|
2 |
Consequences of dispersal failure: kereru and large seeds in New ZealandWotton, Debra Mary January 2007 (has links)
The decline of kereru (Hemiphaga novaeseelandiae) may limit dispersal of large-seeded plants in New Zealand, but the consequences of this are unknown. I determined kereru disperser effectiveness by modelling seed dispersal distances (using seed retention times and movement patterns). Mean seed retention time was significantly longer for larger-seeded species, ranging from 37-181 minutes. Wild radiotracked kereru were sedentary, remaining at one location for up to 5.25 hours. The mean flight distance was 77 m and the maximum was 1, 457 m. Estimated mean seed dispersal distances for tawa (Beilschmiedia tawa), puriri (Vitex lucens), and fivefinger (Pseudopanax arboreus) were 95, 98, and 61 m respectively. Kereru dispersed 66-87% of ingested seeds away from the parent tree, with 79-88% of seeds dispersed <100 m and < 1% dispersed over 1,000 m. In a field seed-fate experiment, "pre-human" conditions (cleaned seeds, low density, away from parent, and protected from mammals) increased survival compared to "post-human" conditions (whole fruits, high density, under parent, not protected) for both taraire (Beilschmiedia tarairi; 15% vs. 2% survival to one year respectively) and karaka (Corynocarpus laevigatus; 60% vs. 11% to two years, respectively). Fruit diameter varied considerably within karaka, taraire, and tawa, although theoretically not enough for them to be swallowed by other birds. Nevertheless, other birds are reported to occasionally take fruits of nearly all large-seeded species. Small tawa seeds produced smaller seedlings in the glasshouse; therefore selection of only smaller seeds by alternative dispersers may negatively affect tawa recruitment. Kereru are generally not gape-limited, and fruit size preferences were independent of mean fruit size. Kereru provide effective dispersal by moving most seeds away from the parent, and enhancing seed and seedling survival. Therefore, both dispersal failure and introduced mammals negatively affect the regeneration of large-seeded trees in New Zealand.
|
3 |
Consequences of dispersal failure: kereru and large seeds in New ZealandWotton, Debra Mary January 2007 (has links)
The decline of kereru (Hemiphaga novaeseelandiae) may limit dispersal of large-seeded plants in New Zealand, but the consequences of this are unknown. I determined kereru disperser effectiveness by modelling seed dispersal distances (using seed retention times and movement patterns). Mean seed retention time was significantly longer for larger-seeded species, ranging from 37-181 minutes. Wild radiotracked kereru were sedentary, remaining at one location for up to 5.25 hours. The mean flight distance was 77 m and the maximum was 1, 457 m. Estimated mean seed dispersal distances for tawa (Beilschmiedia tawa), puriri (Vitex lucens), and fivefinger (Pseudopanax arboreus) were 95, 98, and 61 m respectively. Kereru dispersed 66-87% of ingested seeds away from the parent tree, with 79-88% of seeds dispersed <100 m and < 1% dispersed over 1,000 m. In a field seed-fate experiment, "pre-human" conditions (cleaned seeds, low density, away from parent, and protected from mammals) increased survival compared to "post-human" conditions (whole fruits, high density, under parent, not protected) for both taraire (Beilschmiedia tarairi; 15% vs. 2% survival to one year respectively) and karaka (Corynocarpus laevigatus; 60% vs. 11% to two years, respectively). Fruit diameter varied considerably within karaka, taraire, and tawa, although theoretically not enough for them to be swallowed by other birds. Nevertheless, other birds are reported to occasionally take fruits of nearly all large-seeded species. Small tawa seeds produced smaller seedlings in the glasshouse; therefore selection of only smaller seeds by alternative dispersers may negatively affect tawa recruitment. Kereru are generally not gape-limited, and fruit size preferences were independent of mean fruit size. Kereru provide effective dispersal by moving most seeds away from the parent, and enhancing seed and seedling survival. Therefore, both dispersal failure and introduced mammals negatively affect the regeneration of large-seeded trees in New Zealand.
|
Page generated in 0.0426 seconds