Spelling suggestions: "subject:"segmentation (linguistique)"" "subject:"segmentation (inguistique)""
1 |
Planar phonology and morphology /Cole, Jennifer S. January 1991 (has links)
Texte remanié de: Th. Ph. D.--Cambridge (Mass.)--Massachusetts Institute of Technology, 1987.
|
2 |
Étude des méthodes de la recherche d'information et de l'indexation sur les documents électroniques cas de la langue arabe /Sanan, Majed Zreik, Khaldoun. January 2009 (has links) (PDF)
Reproduction de : Thèse de doctorat : Informatique : Paris 8 : 2008. / Titre provenant de l'écran-titre. Bibliogr. p. 120-127. Index.
|
3 |
Les Phénomènes suprasegmentaux en allemand moderne.Bresson, Daniel, January 1983 (has links)
Th.--Lett.--Paris 4, 1978.
|
4 |
Unsupervised segmentation of sequences using harmony search and hierarchical clustering techniquesRoshani, Asra 20 April 2018 (has links)
Dans le contexte de traitement automatique du langage naturel, les données le plus souvent sont présentées comme une longue séquence de caractères discrets. Donc, l'identification d'un modèle intéressant dans la longue séquence peut être une tâche difficile. En conséquence, la segmentation automatique de données serait extrêmement utile pour extraire les sous-séquences et les morceaux significatifs à partir d'une longue séquence de données. La segmentation de données est l'une des étapes de prétraitement les plus importantes dans plusieurs tâches de traitement du langage naturel. La segmentation de mots est considérée comme la tâche de trouver des morceaux significatifs dans le corpus de textes. L'objectif principal de cette étude est de présenter une technique de segmentation hiérarchique non supervisée en utilisant l'algorithme de recherche d'harmonie (Harmony Search algorithm) qui est une approche d'optimisation méta-heuristique. Dans la technique proposée, la tâche de segmentation de mots est réalisée à l'aide d'une recherche d'harmonie binaire (Binary Harmony search) qui une forme particulière de l'algorithme de recherche d'harmonie. La construction et la formation de modèles de langue sont accomplies par un lexique hiérarchique et un algorithme de Baum-Welch. De plus, pour améliorer la performance et la convergence de la recherche de l'harmonie binaire, quelques modifications innovantes sont appliquées. En général, cette étude présente un algorithme de segmentation de mots hiérarchique non supervisée basée sur une méthode recherche de l'harmonie et examine toutes les questions relatives y compris: la segmentation de mots représentées en format binaire, l'harmonie binaire, l'amélioration de la procédure de l'ajustement du lancement, la définition de la fonction objective en recherche d'harmonie et la politique de pénalité. La performance de l'algorithme est évaluée selon la précision de la segmentation, le rappel, la F-mesure et le temps d'exécution de l'algorithme. Une partie du corpus Moby Dick est utilisée comme étude de cas. Nos expérimentations montrent que l'approche de segmentation basée sur une recherche d'harmonie fournit plusieurs de bons segments, mais qu'il nécessite un long temps d'exécution. / In the context of natural language processing, data is presented most of the time as a long sequence of discrete characters. Therefore, identifying interesting patterns within the long sequence can be a challenging task. Consequently, automatic segmentation of data would be extremely useful to extract the meaningful sub-sequences and chunks from a long data sequence. Segmentation of raw data is one of the most important preprocessing steps in many natural language processing tasks. Word segmentation is considered as the task of finding meaningful chunks, i.e. words, within a text corpus. The main objective of this study is to present an unsupervised hierarchical segmentation technique using Harmony Search algorithm which is a meta-heuristic optimization approach. In the proposed technique, the word segmentation task is performed using a Binary Harmony Search (a special form of Harmony Search). The language model construction and training are accomplished using a hierarchical lexicon and Baum-welch algorithm. Moreover, to improve the performance and convergence of the Binary Harmony Search, some innovative modifications are applied. In general, this study introduces an unsupervised hierarchical word segmentation algorithm based on Harmony Search approach and investigates the following related issues: word segmentation mapping to binary format, Binary Harmony Search, pitch adjustment procedure improvement, Harmony Search objective function definition, and penalty policy. The performance of the algorithm is valuated using segmentation precision, recall, F-measure and the algorithm run time when applied to the part of famous Moby Dick story as the case study. Our experiments reveal that the segmentation approach based on Harmony Search provides significantly good segments, while it requires significant run time.
|
5 |
Informations morpho-syntaxiques et adaptation thématique pour améliorer la reconnaissance de la paroleHuet, Stéphane Sébillot, Pascale January 2007 (has links) (PDF)
Thèse doctorat : Informatique : Rennes 1 : 2007. / Bibliogr. p. 173-195. Index.
|
6 |
Segmentation automatique de parole en phones. Correction d'étiquetage par l'introduction de mesures de confianceNefti, Samir 16 December 2004 (has links) (PDF)
Un système de synthèse de parole par concaténation d'unités acoustiques utilise un dictionnaire de ces unités, construit à partir d'un corpus de parole mono-locuteur segmentée en éléments acoustiques, généralement phonétiques. Pour atteindre une qualité de parole synthétique suffisante, ce dictionnaire doit être richement fourni, et par conséquent nécessite un corpus de plusieurs heures de parole.<br />La segmentation manuelle d'un tel corpus de parole est fastidieuse, d'où l'intérêt de la segmentation automatique. À condition de disposer des transcriptions phonétiques réelles des énoncés, les méthodes automatiques produisent une segmentation de qualité approximativement équivalente à celle d'une segmentation manuelle. Cependant, la transcription manuelle du contenu phonétique du corpus de parole est également fastidieuse.<br />Cette étude concerne la segmentation automatique de parole en phones qui utilise des transcriptions phonétiques automatiquement produites à partir du texte. Elle porte sur la détection et la correction des erreurs d'étiquetage phonétique que contiennent généralement ces transcriptions phonétiques automatiques. Les résultats obtenus dans cette étude sont significativement positifs.
|
Page generated in 0.1404 seconds