Spelling suggestions: "subject:"segmentation dde couleur"" "subject:"segmentation dee couleur""
1 |
Reconnaissance d'objets multiclasses pour des applications d'aide à la conduite et de vidéo surveillanceZaklouta, Fatin 13 December 2011 (has links) (PDF)
La détection de piétons et la reconnaissance des panneaux routiers sont des fonctions importantes des systèmes d'aide à la conduite (anglais : Advanced Driver Assistance System - ADAS). Une nouvelle approche pour la reconnaissance des panneaux et deux méthodes d'élimination de fausses alarmes dans des applications de détection de piétons sont présentées dans cette thèse. Notre approche de reconnaissance de panneaux consiste en trois phases: une segmentation de couleurs, une détection de formes et une classification du contenu. Le color enhancement des régions rouges est amélioré en introduisant un seuil adaptatif. Dans la phase de classification, la performance du K-d tree est augmentée en utilisant un poids spatial. Les Random Forests obtiennent un taux de classification de 97% sur le benchmark allemand de la reconnaissance des panneaux routiers (German Traffic Sign Recognition Benchmark). Les besoins en mémoire et calcul sont réduits en employant une réduction de la dimension des caractéristiques. Les classifieurs atteignent un taux de classification aussi haut qu'avec une fraction de la dimension des caractéristiques, selectionée en utilisant des Random Forests ou Fisher's Crtierion. Cette technique est validée sur deux benchmarks d'images multiclasses : ETH80 et Caltech 101. Dans une application de vidéo surveillance avec des caméras statiques, les fausses alarmes des objets fixes, comme les arbres et les lampadaires, sont éliminées avec la corrélation sur plusieurs trames. Les fausses alarmes récurrentes sont supprimées par un filtre complémentaire en forme d'arbre.
|
Page generated in 0.0988 seconds