• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust seismic amplitude recovery using curvelets

Moghaddam, Peyman P., Herrmann, Felix J., Stolk, Christiaan C. January 2007 (has links)
In this paper, we recover the amplitude of a seismic image by approximating the normal (demigrationmigration)operator. In this approximation, we make use of the property that curvelets remain invariant under the action of the normal operator. We propose a seismic amplitude recovery method that employs an eigenvalue like decomposition for the normal operator using curvelets as eigen-vectors. Subsequently, we propose an approximate non-linear singularity-preserving solution to the least-squares seismic imaging problem with sparseness in the curvelet domain and spatial continuity constraints. Our method is tested with a reverse-time ’wave-equation’ migration code simulating the acoustic wave equation on the SEG-AA salt model.
2

Just diagonalize: a curvelet-based approach to seismic amplitude recovery

Herrmann, Felix J., Moghaddam, Peyman P., Stolk, Christiaan C. January 2007 (has links)
No description available.
3

Robust seismic amplitude recovery using curvelets

Moghaddam, Peyman P., Herrmann, Felix J., Stolk, Christiaan C. January 2007 (has links)
In this paper, we recover the amplitude of a seismic image by approximating the normal (demigrationmigration) operator. In this approximation, we make use of the property that curvelets remain invariant under the action of the normal operator. We propose a seismic amplitude recovery method that employs an eigenvalue like decomposition for the normal operator using curvelets as eigen-vectors. Subsequently, we propose an approximate non-linear singularity-preserving solution to the least-squares seismic imaging problem with sparseness in the curvelet domain and spatial continuity constraints. Our method is tested with a reverse-time ’wave-equation’ migration code simulating the acoustic wave equation on the SEG-AA salt model.
4

Seismic imaging and processing with curvelets

Herrmann, Felix J., Hennenfent, Gilles, Moghaddam, Peyman P. January 2007 (has links)
In this paper, we present a nonlinear curvelet-based sparsity-promoting formulation for three problems in seismic processing and imaging namely, seismic data regularization from data with large percentages of traces missing; seismic amplitude recovery for subsalt images obtained by reverse-time migration and primary-multiple separation, given an inaccurate multiple prediction. We argue why these nonlinear formulations are beneficial.

Page generated in 0.0661 seconds