1 |
Robust seismic amplitude recovery using curveletsMoghaddam, Peyman P., Herrmann, Felix J., Stolk, Christiaan C. January 2007 (has links)
In this paper, we recover the amplitude of a seismic image by approximating the normal (demigrationmigration)operator. In this approximation, we make use of the property that curvelets remain invariant under the action of the normal operator. We propose a seismic amplitude recovery method that employs an eigenvalue like decomposition for the normal operator using curvelets as eigen-vectors. Subsequently, we propose
an approximate non-linear singularity-preserving solution
to the least-squares seismic imaging problem with
sparseness in the curvelet domain and spatial continuity
constraints. Our method is tested with a reverse-time
’wave-equation’ migration code simulating the acoustic
wave equation on the SEG-AA salt model.
|
2 |
Just diagonalize: a curvelet-based approach to seismic amplitude recoveryHerrmann, Felix J., Moghaddam, Peyman P., Stolk, Christiaan C. January 2007 (has links)
No description available.
|
3 |
Robust seismic amplitude recovery using curveletsMoghaddam, Peyman P., Herrmann, Felix J., Stolk, Christiaan C. January 2007 (has links)
In this paper, we recover the amplitude of a seismic
image by approximating the normal (demigrationmigration)
operator. In this approximation, we make
use of the property that curvelets remain invariant under
the action of the normal operator. We propose a seismic
amplitude recovery method that employs an eigenvalue
like decomposition for the normal operator using
curvelets as eigen-vectors. Subsequently, we propose
an approximate non-linear singularity-preserving solution
to the least-squares seismic imaging problem with
sparseness in the curvelet domain and spatial continuity
constraints. Our method is tested with a reverse-time
’wave-equation’ migration code simulating the acoustic
wave equation on the SEG-AA salt model.
|
4 |
Seismic imaging and processing with curveletsHerrmann, Felix J., Hennenfent, Gilles, Moghaddam, Peyman P. January 2007 (has links)
In this paper, we present a nonlinear curvelet-based sparsity-promoting formulation for
three problems in seismic processing and imaging namely, seismic data regularization
from data with large percentages of traces missing; seismic amplitude recovery for subsalt
images obtained by reverse-time migration and primary-multiple separation, given
an inaccurate multiple prediction. We argue why these nonlinear formulations are beneficial.
|
Page generated in 0.0661 seconds