• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Selection and Scaling of Seismic Excitations for Time-History Analysis of Reinforced Concrete Frame Buildings

Galin, Sanja 01 February 2012 (has links)
Time history-analyses of building structures have been used for a quite long time for research at universities. Considering the advantage of time-history analysis relative to the equivalent static force method, the National Building of Canada and other modern building codes around the world require the use of time-history analysis in the design of specified types of buildings located in seismic regions. One of the main issues in the use of time-history analysis is related to the selection and scaling of the seismic excitations (i.e., accelerograms) to be compatible with the design spectrum for the location considered. Currently, both recorded (i.e., “real”) accelerograms and artificial accelerograms are used in the analyses. The objective of this study is to determine the effects of the selection and scaling of seismic excitations on the response of reinforced concrete frame buildings. Three reinforced concrete frame buildings with heights of 4 storey, 10 storey and 16 storey, designed for Vancouver (high seismic zone) were used in this study. Five sets of seismic excitations were used in the analysis – one set of “real” accelerograms, and four sets of artificial accelerograms obtained by different methods. All sets were scaled to be compatible with the design spectrum for Vancouver. Both linear and nonlinear time history analyses were conducted on the buildings considered. Interstorey drifts and storey shear forces were used as response parameters. The results from the linear analysis show that both the interstorey drifts and the shear forces are affected significantly by the type of the excitation set. Similarly, the effects of the type of the seismic excitations on the drifts from nonlinear analysis are substantial. On the other hand, the influence of the excitation sets on the storey shears from nonlinear analysis are quite small. Based on the results from this study, sets of scaled real records are preferred for use in time-history analysis of building structures. If such records are not available, then sets of simulated accelerograms based on the regional seismic characteristics should be used.
2

Selection and Scaling of Seismic Excitations for Time-History Analysis of Reinforced Concrete Frame Buildings

Galin, Sanja 01 February 2012 (has links)
Time history-analyses of building structures have been used for a quite long time for research at universities. Considering the advantage of time-history analysis relative to the equivalent static force method, the National Building of Canada and other modern building codes around the world require the use of time-history analysis in the design of specified types of buildings located in seismic regions. One of the main issues in the use of time-history analysis is related to the selection and scaling of the seismic excitations (i.e., accelerograms) to be compatible with the design spectrum for the location considered. Currently, both recorded (i.e., “real”) accelerograms and artificial accelerograms are used in the analyses. The objective of this study is to determine the effects of the selection and scaling of seismic excitations on the response of reinforced concrete frame buildings. Three reinforced concrete frame buildings with heights of 4 storey, 10 storey and 16 storey, designed for Vancouver (high seismic zone) were used in this study. Five sets of seismic excitations were used in the analysis – one set of “real” accelerograms, and four sets of artificial accelerograms obtained by different methods. All sets were scaled to be compatible with the design spectrum for Vancouver. Both linear and nonlinear time history analyses were conducted on the buildings considered. Interstorey drifts and storey shear forces were used as response parameters. The results from the linear analysis show that both the interstorey drifts and the shear forces are affected significantly by the type of the excitation set. Similarly, the effects of the type of the seismic excitations on the drifts from nonlinear analysis are substantial. On the other hand, the influence of the excitation sets on the storey shears from nonlinear analysis are quite small. Based on the results from this study, sets of scaled real records are preferred for use in time-history analysis of building structures. If such records are not available, then sets of simulated accelerograms based on the regional seismic characteristics should be used.
3

Selection and Scaling of Seismic Excitations for Time-History Analysis of Reinforced Concrete Frame Buildings

Galin, Sanja 01 February 2012 (has links)
Time history-analyses of building structures have been used for a quite long time for research at universities. Considering the advantage of time-history analysis relative to the equivalent static force method, the National Building of Canada and other modern building codes around the world require the use of time-history analysis in the design of specified types of buildings located in seismic regions. One of the main issues in the use of time-history analysis is related to the selection and scaling of the seismic excitations (i.e., accelerograms) to be compatible with the design spectrum for the location considered. Currently, both recorded (i.e., “real”) accelerograms and artificial accelerograms are used in the analyses. The objective of this study is to determine the effects of the selection and scaling of seismic excitations on the response of reinforced concrete frame buildings. Three reinforced concrete frame buildings with heights of 4 storey, 10 storey and 16 storey, designed for Vancouver (high seismic zone) were used in this study. Five sets of seismic excitations were used in the analysis – one set of “real” accelerograms, and four sets of artificial accelerograms obtained by different methods. All sets were scaled to be compatible with the design spectrum for Vancouver. Both linear and nonlinear time history analyses were conducted on the buildings considered. Interstorey drifts and storey shear forces were used as response parameters. The results from the linear analysis show that both the interstorey drifts and the shear forces are affected significantly by the type of the excitation set. Similarly, the effects of the type of the seismic excitations on the drifts from nonlinear analysis are substantial. On the other hand, the influence of the excitation sets on the storey shears from nonlinear analysis are quite small. Based on the results from this study, sets of scaled real records are preferred for use in time-history analysis of building structures. If such records are not available, then sets of simulated accelerograms based on the regional seismic characteristics should be used.
4

Selection and Scaling of Seismic Excitations for Time-History Analysis of Reinforced Concrete Frame Buildings

Galin, Sanja January 2012 (has links)
Time history-analyses of building structures have been used for a quite long time for research at universities. Considering the advantage of time-history analysis relative to the equivalent static force method, the National Building of Canada and other modern building codes around the world require the use of time-history analysis in the design of specified types of buildings located in seismic regions. One of the main issues in the use of time-history analysis is related to the selection and scaling of the seismic excitations (i.e., accelerograms) to be compatible with the design spectrum for the location considered. Currently, both recorded (i.e., “real”) accelerograms and artificial accelerograms are used in the analyses. The objective of this study is to determine the effects of the selection and scaling of seismic excitations on the response of reinforced concrete frame buildings. Three reinforced concrete frame buildings with heights of 4 storey, 10 storey and 16 storey, designed for Vancouver (high seismic zone) were used in this study. Five sets of seismic excitations were used in the analysis – one set of “real” accelerograms, and four sets of artificial accelerograms obtained by different methods. All sets were scaled to be compatible with the design spectrum for Vancouver. Both linear and nonlinear time history analyses were conducted on the buildings considered. Interstorey drifts and storey shear forces were used as response parameters. The results from the linear analysis show that both the interstorey drifts and the shear forces are affected significantly by the type of the excitation set. Similarly, the effects of the type of the seismic excitations on the drifts from nonlinear analysis are substantial. On the other hand, the influence of the excitation sets on the storey shears from nonlinear analysis are quite small. Based on the results from this study, sets of scaled real records are preferred for use in time-history analysis of building structures. If such records are not available, then sets of simulated accelerograms based on the regional seismic characteristics should be used.
5

Techniques de modélisation pour la conception des bâtiments parasismiques en tenant compte de l’interaction sol-structure / Modeling techniques for building design considering soil-structure interaction

Fares, Reine 16 November 2018 (has links)
La conception des bâtiments selon le code sismique européen ne prend pas en compte les effets de l'interaction sol-structure (ISS). L'objectif de cette recherche est de proposer une technique de modélisation pour prendre en compte l’ISS et l'interaction structure-sol-structure (ISSS). L'approche de propagation unidirectionnelle d’une onde à trois composantes (1D-3C) est adoptée pour résoudre la réponse dynamique du sol. La technique de modélisation de propagation unidirectionnelle d'une onde à trois composantes est étendue pour des analyses d'ISS et ISSS. Un sol tridimensionnel (3D) est modélisé jusqu'à une profondeur fixée, où la réponse du sol est influencée par l’ISS et l’ISSS, et un modèle de sol 1-D est adopté pour les couches de sol plus profondes, jusqu'à l'interface sol-substrat. Le profil de sol en T est assemblé avec une ou plusieurs structures 3-D de type poteaux-poutres, à l’aide d’un modèle par éléments finis, pour prendre en compte, respectivement, l’ISS et l’ISSS dans la conception de bâtiments. La technique de modélisation 1DT-3C proposée est utilisée pour étudier les effets d’ISS et analyser l'influence d'un bâtiment proche (l'analyse d’ISSS), dans la réponse sismique des structures poteaux-poutres. Une analyse paramétrique de la réponse sismique des bâtiments en béton armé est développée et discutée pour identifier les paramètres clé du phénomène d’ISS, influençant la réponse structurelle, à introduire dans la conception de bâtiments résistants aux séismes. La variation de l'accélération maximale en haut du bâtiment avec le rapport de fréquence bâtiment / sol est tracée pour plusieurs bâtiments, chargés par un mouvement à bande étroite, excitant leur fréquence fondamentale. Dans le cas de sols et de structures à comportement linéaire, une tendance similaire est obtenue pour différents bâtiments. Cela suggère l'introduction d'un coefficient correcteur du spectre de réponse de dimensionnement pour prendre en compte l’ISS. L'analyse paramétrique est répétée en introduisant l'effet de la non-linéarité du sol et du béton armé. La réponse sismique d'un bâtiment en béton armé est estimée en tenant compte de l'effet d'un bâtiment voisin, pour un sol et des structures à comportement linéaire, dans les deux cas de charge sismique à bande étroite excitant la fréquence fondamentale du bâtiment cible et du bâtiment voisin. Cette approche permet une analyse efficace de l'interaction structure-sol-structure pour la pratique de l'ingénierie afin d'inspirer la conception d'outils pour la réduction du risque sismique et l'organisation urbaine. / Building design according to European seismic code does not consider the effects of soil-structure interaction (SSI). The objective of this research is to propose a modeling technique for SSI and Structure-Soil-Structure Interaction (SSSI) analysis. The one-directional three-component (1D-3C) wave propagation approach is adopted to solve the dynamic soil response. The one-directional three-component wave propagation model is extended for SSI and SSSI analysis. A three-dimensional (3-D) soil is modeled until a fixed depth, where the soil response is influenced by SSI and SSSI, and a 1-D soil model is adopted for deeper soil layers until the soil-bedrock interface. The T-soil profile is assembled with one or more 3-D frame structures, in a finite element scheme, to consider, respectively, SSI and SSSI in building design. The proposed 1DT-3C modeling technique is used to investigate SSI effects and to analyze the influence of a nearby building (SSSI analysis), in the seismic response of frame structures. A parametric analysis of the seismic response of reinforced concrete (RC) buildings is developed and discussed to identify the key parameters of SSI phenomenon, influencing the structural response, to be introduced in earthquake resistant building design. The variation of peak acceleration at the building top with the building to soil frequency ratio is plotted for several buildings, loaded by a narrow-band motion exciting their fundamental frequency. In the case of linear behaving soil and structure, a similar trend is obtained for different buildings. This suggests the introduction of a corrective coefficient of the design response spectrum to take into account SSI. The parametric analysis is repeated introducing the effect of nonlinear behaving soil and RC. The seismic response of a RC building is estimated taking into account the effect of a nearby building, for linear behaving soil and structures, in both cases of narrow-band seismic loading exciting the fundamental frequency of the target and nearby building. This approach allows an easy analysis of structure-soil-structure interaction for engineering practice to inspire the design of seismic risk mitigation tools and urban organization.

Page generated in 0.0807 seconds