1 |
Non-contact surface wave measurements on pavementsBjurström, Henrik January 2017 (has links)
In this thesis, nondestructive surface wave measurements are presented for characterization of dynamic modulus and layer thickness on different pavements and cement concrete slabs. Air-coupled microphones enable rapid data acquisition without physical contact with the pavement surface. Quality control of asphalt concrete pavements is crucial to verify the specified properties and to prevent premature failure. Testing today is primarily based on destructive testing and the evaluation of core samples to verify the degree of compaction through determination of density and air void content. However, mechanical properties are generally not evaluated since conventional testing is time-consuming, expensive, and complicated to perform. Recent developments demonstrate the ability to accurately determine the complex modulus as a function of loading time (frequency) and temperature using seismic laboratory testing. Therefore, there is an increasing interest for faster, continuous field data evaluation methods that can be linked to the results obtained in the laboratory, for future quality control of pavements based on mechanical properties. Surface wave data acquisition using accelerometers has successfully been used to determine dynamic modulus and thickness of the top asphalt concrete layer in the field. However, accelerometers require a new setup for each individual measurement and are therefore slow when testing is performed in multiple positions. Non-contact sensors, such as air-coupled microphones, are in this thesis established to enable faster surface wave testing performed on-the-fly. For this project, a new data acquisition system is designed and built to enable rapid surface wave measurements while rolling a data acquisition trolley. A series of 48 air-coupled micro-electro-mechanical sensor (MEMS) microphones are mounted on a straight array to realize instant collection of multichannel data records from a single impact. The data acquisition and evaluation is shown to provide robust, high resolution results comparable to conventional accelerometer measurements. The importance of a perfect alignment between the tested structure’s surface and the microphone array is investigated by numerical analyses. Evaluated multichannel measurements collected in the field are compared to resonance testing on core specimens extracted from the same positions, indicating small differences. Rolling surface wave measurements obtained in the field at different temperatures also demonstrate the strong temperature dependency of asphalt concrete. A new innovative method is also presented to determine the thickness of plate like structures. The Impact Echo (IE) method, commonly applied to determine thickness of cement concrete slabs using an accelerometer, is not ideal when air-coupled microphones are employed due to low signal-to-noise ratio. Instead, it is established how non-contact receivers are able to identify the frequency of propagating waves with counter-directed phase velocity and group velocity, directly linked to the IE thickness resonance frequency. The presented non-contact surface wave testing indicates good potential for future rolling quality control of asphalt concrete pavements. / <p>QC 20170209</p>
|
2 |
Development of the Spectral-Analysis-of-Body-Waves (SABW) method for downhole seismic testing with boreholes or penetrometersKim, Changyoung 13 November 2012 (has links)
Downhole seismic testing and seismic cone penetration testing (SCPT) have shown little change since the 1990’s, with essentially the same sensors, sources, test procedures and analytical methods being used. In these tests, the time differences of first-arrivals or other reference points early in the time-domain signals have been used to calculate shear and compression wave velocities in soil and rock layers. This time-domain method requires an operator to pick the first arrival or other reference point of each seismic wave in the time record. Picking these reference points correctly is critical in calculating wave velocities. However, picking these points in time records is time consuming and is not always easy because of low signal-to-noise ratios, especially in the case of shear waves which arrive later in the time record. To avoid picking reference points, a cross-correlation method is sometimes applied to determine travel times of the seismic waves, especially in traditional downhole testing. One benefit of the cross-correlation method is that it can be automated. The cross-correlation method is not, however, appropriate for evaluation other body wave characteristics such as wave dispersion and material damping.
An alternate approach is to use frequency-domain analysis methods which are well suited for evaluating time changes between all types of waveforms measured at spatially different points. In addition, frequency-domain methods can be automated and attenuation measurements can also be performed. Examples of such testing procedures with Rayleigh-type surface waves in geotechnical earthquake engineering are the Spectral-Analysis-of-Surface-Waves (SASW) and Multi-Channel-Analysis-of-Surface-Waves (MASW) methods. In this research, an automated procedure for calculating body wave velocities that is based on frequency-domain analysis is presented. The basis for and an automated procedure to calculated body wave dispersion is also presented. Example results showing shear wave velocity and material damping measurements in the SCPT are presented.
The objective of this study is to improve downhole seismic tests with boreholes, cone penetrometers or flat-plate dilatometers by developing a frequency-domain analysis method which overcomes many of the disadvantages of time-domain analyses. The frequency-domain method is called the Spectral-Analysis-of-Body-Waves (SABW) method. The SABW method does not require an operator to pick the first-arrival or other reference times. As a result, the shear wave velocities and wave dispersion can be calculated in real time using the interpretation method with an automatic calculation procedure, thus reducing human subjectivity. Also, the SABW method can be used to determine additional information from the dispersion curves such as the material damping ratio and an estimate of soil type based on the dispersion relationship.
In this research, field SCPT measurements are presented as an example to illustrate the potential of the SABW method. Measurements with shear waves are highlighted because these measurements are most often required in geotechnical earthquake engineering studies. / text
|
Page generated in 0.0925 seconds