Spelling suggestions: "subject:"seleção dde entrada"" "subject:"seleção dee entrada""
1 |
Group Method of Data Handling (GMDH) e redes neurais na monitoração e detecção de falhas em sensores de centrais nucleares / Group method of data handling and neural networks applied in monitoring and fault detection in sensors in nuclear power plantsBueno, Elaine Inacio 07 June 2011 (has links)
A demanda crescente na complexidade, eficiência e confiabilidade nos sistemas industriais modernos têm estimulado os estudos da teoria de controle aplicada no desenvolvimento de sistemas de Monitoração e Detecção de Falhas. Neste trabalho foi desenvolvida uma metodologia inédita de Monitoração e Detecção de Falhas através do algoritmo GMDH e Redes Neurais Artificiais (RNA) que foi aplicada ao reator de pesquisas do IPEN, IEA-R1. O desenvolvimento deste trabalho foi dividido em duas etapas: sendo a primeira etapa dedicada ao pré-processamento das informações, realizada através do algoritmo GMDH; e a segunda o processamento das informações através de RNA. O algoritmo GMDH foi utilizado de duas maneiras diferentes: primeiramente, o algoritmo GMDH foi utilizado para gerar uma melhor estimativa da base de dados, tendo como resultado uma matriz denominada matriz_z, que foi utilizada no treinamento das RNA. Logo após, o GMDH foi utilizado no estudo das variáveis mais relevantes, sendo estas variáveis utilizadas no processamento das informações. Para realizar as simulações computacionais, foram propostos cinco modelos: Modelo 1 (Modelo Teórico) e Modelos 2, 3, 4 e 5 (Dados de operação do reator). Após a realização de um estudo exaustivo dedicado a Monitoração, iniciou-se a etapa de Detecção de Falhas em sensores, onde foram simuladas falhas na base de dados dos sensores. Para tanto as leituras dos sensores tiveram um acréscimo dos seguintes valores: 5%, 10%, 15% e 20%. Os resultados obtidos utilizando o algoritmo GMDH na escolha das melhores variáveis de entrada para as RNA foram melhores do que aqueles obtidos utilizando apenas RNA, o que viabiliza o uso da nova metodologia de Monitoração e Detecção de Falhas em sensores apresentada. / The increasing demand in the complexity, efficiency and reliability in modern industrial systems stimulated studies on control theory applied to the development of Monitoring and Fault Detection system. In this work a new Monitoring and Fault Detection methodology was developed using GMDH (Group Method of Data Handling) algorithm and Artificial Neural Networks (ANNs) which was applied to the IEA-R1 research reactor at IPEN. The Monitoring and Fault Detection system was developed in two parts: the first was dedicated to preprocess information, using GMDH algorithm; and the second part to the process information using ANNs. The GMDH algorithm was used in two different ways: firstly, the GMDH algorithm was used to generate a better database estimated, called matrix_z, which was used to train the ANNs. After that, the GMDH was used to study the best set of variables to be used to train the ANNs, resulting in a best monitoring variable estimative. The methodology was developed and tested using five different models: one Theoretical Model and four Models using different sets of reactor variables. After an exhausting study dedicated to the sensors Monitoring, the Fault Detection in sensors was developed by simulating faults in the sensors database using values of 5%, 10%, 15% and 20% in these sensors database. The results obtained using GMDH algorithm in the choice of the best input variables to the ANNs were better than that using only ANNs, thus making possible the use of these methods in the implementation of a new Monitoring and Fault Detection methodology applied in sensors.
|
2 |
Group Method of Data Handling (GMDH) e redes neurais na monitoração e detecção de falhas em sensores de centrais nucleares / Group method of data handling and neural networks applied in monitoring and fault detection in sensors in nuclear power plantsElaine Inacio Bueno 07 June 2011 (has links)
A demanda crescente na complexidade, eficiência e confiabilidade nos sistemas industriais modernos têm estimulado os estudos da teoria de controle aplicada no desenvolvimento de sistemas de Monitoração e Detecção de Falhas. Neste trabalho foi desenvolvida uma metodologia inédita de Monitoração e Detecção de Falhas através do algoritmo GMDH e Redes Neurais Artificiais (RNA) que foi aplicada ao reator de pesquisas do IPEN, IEA-R1. O desenvolvimento deste trabalho foi dividido em duas etapas: sendo a primeira etapa dedicada ao pré-processamento das informações, realizada através do algoritmo GMDH; e a segunda o processamento das informações através de RNA. O algoritmo GMDH foi utilizado de duas maneiras diferentes: primeiramente, o algoritmo GMDH foi utilizado para gerar uma melhor estimativa da base de dados, tendo como resultado uma matriz denominada matriz_z, que foi utilizada no treinamento das RNA. Logo após, o GMDH foi utilizado no estudo das variáveis mais relevantes, sendo estas variáveis utilizadas no processamento das informações. Para realizar as simulações computacionais, foram propostos cinco modelos: Modelo 1 (Modelo Teórico) e Modelos 2, 3, 4 e 5 (Dados de operação do reator). Após a realização de um estudo exaustivo dedicado a Monitoração, iniciou-se a etapa de Detecção de Falhas em sensores, onde foram simuladas falhas na base de dados dos sensores. Para tanto as leituras dos sensores tiveram um acréscimo dos seguintes valores: 5%, 10%, 15% e 20%. Os resultados obtidos utilizando o algoritmo GMDH na escolha das melhores variáveis de entrada para as RNA foram melhores do que aqueles obtidos utilizando apenas RNA, o que viabiliza o uso da nova metodologia de Monitoração e Detecção de Falhas em sensores apresentada. / The increasing demand in the complexity, efficiency and reliability in modern industrial systems stimulated studies on control theory applied to the development of Monitoring and Fault Detection system. In this work a new Monitoring and Fault Detection methodology was developed using GMDH (Group Method of Data Handling) algorithm and Artificial Neural Networks (ANNs) which was applied to the IEA-R1 research reactor at IPEN. The Monitoring and Fault Detection system was developed in two parts: the first was dedicated to preprocess information, using GMDH algorithm; and the second part to the process information using ANNs. The GMDH algorithm was used in two different ways: firstly, the GMDH algorithm was used to generate a better database estimated, called matrix_z, which was used to train the ANNs. After that, the GMDH was used to study the best set of variables to be used to train the ANNs, resulting in a best monitoring variable estimative. The methodology was developed and tested using five different models: one Theoretical Model and four Models using different sets of reactor variables. After an exhausting study dedicated to the sensors Monitoring, the Fault Detection in sensors was developed by simulating faults in the sensors database using values of 5%, 10%, 15% and 20% in these sensors database. The results obtained using GMDH algorithm in the choice of the best input variables to the ANNs were better than that using only ANNs, thus making possible the use of these methods in the implementation of a new Monitoring and Fault Detection methodology applied in sensors.
|
Page generated in 0.1155 seconds