• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal pH-management during operations requiring hypothermic circulatory arrest:an experimental study employing pH- and/or α-stat strategies during cardiopulmonary bypass

Dahlbacka, S. (Sebastian) 05 June 2007 (has links)
Abstract Cessation of the blood circulation for some time during surgery of the aortic arch and repair of congenital heart defects is normally required to allow a bloodless operation field. Hypothermia is the most important mechanism for end-organ protection, particularly the brain, during such operations. Cardiopulmonary bypass is used for core cooling before total hypothermic circulatory arrest (HCA) or selective cerebral perfusion (SCP) are initiated. During hypothermic cardiopulmonary bypass, pH can be managed according to either pH- or alpha-stat principles. In the present work, the optimal pH management strategy for operations requiring HCA or SCP was explored. An experimental porcine model was used. Firstly, outcome was evaluated in a HCA model using either the α- or pH-stat perfusion strategy (I). Secondly, we sought to determine which acid-base management is more effective in attenuating ischemic brain injury during combined HCA and embolization conditions (II). In the third study, the impact of propofol anesthesia and α-stat perfusion strategy on outcome was explored (III). Finally, the acute effects of perfusion strategies in a SCP porcine were compared (IV). Hemodynamics, temperature, EEG (I-III), brain microdialysis, intracranial pressure (I-III), brain tissue oxygen partial pressure (I-III), and intravital microscopy (IV) were monitored intraoperatively. In the chronic studies, survival, postoperative neurologic recovery and brain histopathologic examination were evaluated (I-III). pH-stat strategy was associated with superior outcome compared to the α-stat strategy during a 75-minute period of deep HCA (I). In addition, despite the pH-stat strategy-related cerebral vasodilatation, this method provided better neuroprotection in a setting of cerebral particle embolization prior to a 25-minute period of deep HCA (II). Propofol anesthesia combined with α-stat perfusion strategy was observed to deteriorate the brain injury during HCA evaluated by key brain microdialysis parameters (III). Finally, when employing moderately hypothermic SCP, the differences between pH- and α-stat strategies in cerebral metabolism and microcirculation were minimal. These findings are clinically relevant since α-stat perfusion strategy is still the most commonly used acid-base perfusion strategy during hypothermic cardiopulmonary bypass in adults, and propofol one of the most used anesthetics in clinical practice. It is also noteworthy that the pH-stat strategy is not currently used in adults because of the perceived increased risk of atherosclerotic embolization. However, the advantage of pH-stat strategy over α-stat strategy could not be observed when employing SCP.
2

Approaches to improving brain protection in cardiac and aortic surgery:an experimental study in a porcine model with hypertonic saline dextran, levosimendan, leukocyte depleting filter and different acid base management strategies

Kaakinen, H. (Hanna) 21 October 2008 (has links)
Abstract In the repair of complex congenital heart defects or in surgery of the aortic arch, normal circulation may be temporarily halted to ensure a clean, bloodless operation field. The brain is the organ most vulnerable to ischemic injury during this no-flow period, and the mortality and morbidity of these procedures today consists mostly of neurological complications. Hypothermia decreases the need for oxygen and other metabolites, and cooling the patient with an extracorporeal heart-lung machine can provide enough time to perform the necessary surgical procedures during a circulatory standstill. This procedure is referred to as hypothermic circulatory arrest (HCA). Sometimes the cerebral circulation can be maintained even if the rest of the body undergoes circulatory arrest, and this strategy, involving separate catheterization of brain-destined vessels, is referred to as selective cerebral perfusion (SCP). In this work, four separate brain protection strategies were evaluated. Two studies were performed on a surviving porcine model (I, II) to evaluate neurological recovery as well as cerebral metabolism and histopathology, and two were acute in design (III, IV), employing the modern technology of intravital microscopy to examine cerebral microcirculation. The first study (I) showed that the administration of hypertonic saline dextran (HSD) led to a decrease in intracranial pressure, improved brain metabolism, better neurological recovery and less histopathological injury of the brain tissue in association with HCA. In the second study (II) a novel pharmacological molecule, levosimendan, reduced the intracranial pressure during the operation, but no improvement in terms of cerebral metabolism, neurological recovery or histopathological brain injury was observed after HCA. In the third study (III), real-time intravital microscopy showed that in association with HCA, a leukocyte depleting filter (LDF) attached to the cardiopulmonary bypass circuit reduces the number of activated leukocytes in cerebral microcirculation. In the fourth study (IV), cerebral metabolism and microcirculation were similar during SCP independent of the acid-base management strategy. The results of this work suggest that HSD could be assessed in human trials, that levosimendan needs further studies to optimize its potential, that the LDF functions as designed and that the differences between the α- and the pH-stat acid-base management strategies with SCP did not differ in moderate hypothermia.

Page generated in 0.104 seconds