• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 35
  • 11
  • 7
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 156
  • 156
  • 156
  • 77
  • 75
  • 48
  • 42
  • 38
  • 31
  • 30
  • 28
  • 26
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Zpracování Al-Sc hliníkové slitiny technologií SLM / Processing of Al-Sc aluminum alloy using SLM technology

Skulina, Daniel January 2017 (has links)
Master's thesis deals with the experimental determination of process parameters reaching densities >99 % for scandium modified aluminium alloy (Scalmalloy®) processed by SLM. The alloy achieves higher mechanical properties than the AlSi10Mg aluminum alloy commonly used. The theoretical part deals mainly with the results of Scalmalloy® alloys. Experimental bodies, testing methodology and evaluation method were designed on the basis of the theoretical parts,. The practical part is divided into four main stages: experimental determination of process parameters, a description of the effect of the parameters used on the relative density achieved, examination of the influence of process parameters on surface quality and mechanical testing. The mechanical properties were determined for the best parameters.
62

Univerzální úsťové zařízení na útočnou pušku / Universal muzzle device for an assault rifle

Rušar, Filip January 2017 (has links)
This diploma thesis deals with the design of a universal muzzle device for the assault rifle. The device is designed to produce Selective Laser Melting. The main objective is the elimination negative effects of gunshot. The paper explores possibilities of using porous structures for this type of equipment. The influence of individual types of porous structures on the flow of gases is monitored. The universal muzzle device itself is optimized using CFD analyzes. The device was made using SLM technology and experimentally verified. His impact on the impact, gun lift, noise and flame elimination was investigated.
63

Mechanické vlastnosti Al slitiny připravené pomocí procesu SLM / Mechanical properties of Al alloy prepared by SLM process

Vitásek, Ladislav January 2017 (has links)
The master's thesis deals with properties of aluminium alloys prepared by SLM process. The teoretical part of thesis is focused on decribtion of selective laser melting technology, metallurgical defects and mechanical properties of aluminium alloys processed by this technology. The experimental part of this thesis deals with selections of the SLM process parameters suitable for samples preparation in bulk. Tensile testing at room temperature was used for evaluation of basic mechanical properties. Metallographic and fractographic analyses were performed for evaluation of the microstructure and fracture mechanisms. The materials characteristics obtained on SLM samples were compared with the properties of the same materials grade produced by conventional technologies.
64

Vývoj procesních parametrů slitiny mědi pro 3D tisk tenkostěnných struktur / Process parameters development for copper thin walls manufacturing via 3D printing

Klimek, Ľubomír January 2018 (has links)
In the work is used the processing of metallic material by the method of Selective Laser Melting. The main objective is to verify and describe the influence of the individual process parameters entering the production process when processing the alloy Cu7.2Ni1.8Si1Cr with SLM. This alloy contains 90 % copper. The first theoretical part of the thesis describes so far processed copper alloys with a high content of copper using the method of Selective Laser Melting. The practical part then deals with the specification of the main process parameters, which are optimized in the next part of the work solution. On the basis of the information obtained experimental bodies have been created, which will be tested and analyzed in several steps. The work focuses on thin-walled samples, which have a perspective use in the creation of highefficiency heat exchangers. The main results that the work deals with are the relative density and mechanical properties of the material. Also, great emphasis is placed on the resulting surface quality
65

Vývoj procesních parametrů technologie Selective laser melting pro výrobu tenkostěnných dílů z práškového železa / Development of process parameters of Selective laser melting technology for the production of thin-walled iron parts

Šreibr, Vít January 2018 (has links)
The thesis deals with the processing of pure iron by Selective laser melting technology as a material with good electromagnetic properties. The main area is the optimization of the production of thin-walled samples, which monitor the influence of process parameters on the thickness and quality of the wall surfaces. In addition to the perpendicular walls, walls built at an angle of 45° are also examined. Another phase of the thesis is the determination of process parameters for bulk bodies to achieve the lowest porosity and high surface quality. An important part of the research is the application of acquired knowledge in the production of samples designed to test magnetic properties as well as part for a specific application. These considerations concern not only the setting of the printing parameters, but also the heat treatment and its influence on the magnetic and mechanical properties of the material. Mechanical properties were determined by tensile tests and hardness tests. All samples were made on a SLM 280HL using a 400W ytterbium laser.
66

Konstrukce nanášecího systému pro zpracování dvou kovových prášků pomocí 3D tisku / Design of recoating system for processing of two metal powders using 3D Printing

Guráň, Radoslav January 2019 (has links)
The thesis deals with the design, construction and testing of two different metal powder coating equipment, which is able to work with SLM 280HL metal 3D printer. Since the field of multimaterial metal printing by selective laser melting (SLM) has not been significantly investigated yet, an overview of existing patents and possible approaches to the solution has been developed. The device has been successfully designed and a series of tests was carried out defining the issue of applying an improved head that uses a nozzle and an eccentric vibration motor. Based on the experiments performed, the coating parameters of the multimaterial layer of FeAm and 316L materials were defined. A control system for the partial process automation was created for the proposed device. The device was implemented in a printer that demonstrated both the ability to apply a single multimaterial layer of at least 50 m thickness, and the ability to produce a 3D multimaterial component comprised of up to 200 layers and containing material change across all axes.
67

Návrh aditivně vyráběného tepelného výměníku olej-voda pro formuli student / Design of additively manufactured oil-water heat exchanger for formula student

Březina, Josef January 2019 (has links)
Diploma thesis deals with a design and manufacture of oil cooler by technology Selective Laser Melting for Formula Student. The main goal of the design is to ensure optimal oil circuit cooling at a minimal mass. The design of manufactured oil cooler is based on a plate heat exchanger concept with optimized intakes by CFD simulations and heat exchange body with fins of thickness 0.17 mm. An analytical model was created. SLM process parameters were optimized for a thin walls printing, Subsequently, a fabrication of testing parts was finished for measuring pressure drops and performances of micro heat exchangers. Results were used for an accuracy improvement of the analytical model and for consequent optimization of heat exchange surface. Afterwards optimization was executed for inlets and outlets by using flow simulations. A prototype was built and verified on a test stand. Performance of the designed oil cooler is 4.5 kW for race mode, where temperature drop of oil circuit is 22 °C. The lightweight design weighs 320 g, which reduces more than 47 % of a current oil-air cooler weight. Furthermore, a centre of gravity is decreased by designed placement of the cooler.
68

Mechanické vlastnosti materiálů připravovaných pomocí procesu SLM / Mechanical properties of materials prepared by SLM process

Nopová, Klára January 2019 (has links)
The final thesis determined the properties of alloys formed from mixtures of powders processed by the SLM method. Powders of alloy AlSi12 and EN AW 2618 were fused in the proportion 75 wt. % AlSi12 + 25 wt. % 2618, 50 wt. % AlSi12 + 50 wt. % 2618 and 25 wt. % AlSi12 + 75 wt. % 2618. Metallographic analysis, EBSD analysis and line EDS microanalysis were made on the samples. Tensile test at room temperature and hardness were carried out to determine the mechanical properties. Fractographic analysis was performed after tensile test.
69

Konstrukční optimalizace dílu pro tepelný spínač / Structural optimization of the heat switch part

Zemek, Albert January 2020 (has links)
This diploma thesis deals with the design of a structure for heat transfer path of miniaturized heat switch. The focus is on production using SLM additive technology. The aim is to assess the possibilities of using metal 3D printing on a part intended primarily for heat transfer. This work presents several concepts of structure arrangement, which are further analysed and evaluated. The results show the potential of additive technologies in this area and the proposed structures meet the heat transfer requirement according to the calculations used.
70

Vývoj SLM procesních parametrů pro tenkostěnné díly z niklové superslitiny / Development of SLM process parameters for thin-walled nickel superalloy components

Kafka, Richard January 2021 (has links)
The diploma thesis deals with the development of process parameters of SLM technology for the material IN718. The main goal is an experimental development of a set of parameters for the production of thin-walled parts with regard to material density, surface roughness and tightness. The essence of the development of parameters is an experimental explanation of the influence of laser power and scanning speed on the morphology of single tracks, which are used for the production of a thin wall. Together with walls of larger widths and volume samples, it is possible to create an intersection of parameters by which is possible to create components formed by a combination of thin-walled and volume geometry. The performed research created a material set, where the parameters of thin walls are used for the area of contours of bulk samples. We managed to produce a wall with an average width of 0.15 mm and roughness of 6 m, which meets the requirement for the tightness. The meander scanning pattern achieved a relative material density of 99.92%, which is more than with the supplier's parameters. Based on the acquired knowledge, it was possible to apply a set of parameters to components combining both geometries.

Page generated in 0.0999 seconds