• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 23
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Tunable MEMS-Enabled Frequency Selective Surface

Safari, Mojtaba 27 January 2012 (has links)
A frequency selective surface (FSS) based on switchable slots in the ground plane is presented. The switching is done using an actuating MEMS bridge over the slot. The intent is to demonstrate the control of the resonance frequency of the FSS by deflecting the bridge. It is shown that by applying a voltage between the bridge and the ground plane, the bridge displaces and changes the system capacitance which in turn changes the resonance frequency. Two analyses are presented; (1) Electromechanical analysis to show how the bridge deflects by the voltage, (2) Electromagnetic analysis to show how the resonance frequency changes by the bridge deflection. The device was fabricated and tested. The measurement results are presented for two up and down positions of the MEMS bridge to verify the correctness of the theory and design.
2

A Tunable MEMS-Enabled Frequency Selective Surface

Safari, Mojtaba 27 January 2012 (has links)
A frequency selective surface (FSS) based on switchable slots in the ground plane is presented. The switching is done using an actuating MEMS bridge over the slot. The intent is to demonstrate the control of the resonance frequency of the FSS by deflecting the bridge. It is shown that by applying a voltage between the bridge and the ground plane, the bridge displaces and changes the system capacitance which in turn changes the resonance frequency. Two analyses are presented; (1) Electromechanical analysis to show how the bridge deflects by the voltage, (2) Electromagnetic analysis to show how the resonance frequency changes by the bridge deflection. The device was fabricated and tested. The measurement results are presented for two up and down positions of the MEMS bridge to verify the correctness of the theory and design.
3

Scattering and propagation of electromagnetic waves in planar and curved periodic structures - applications to plane wave filters, plane wave absorbers and impedance surfaces

Forslund, Ola January 2004 (has links)
The subject of this thesis is scattering of electromagneticwaves from planar and curved periodic structures. The problemspresented are solved in the frequency domain. Scattering from planar structures with two-dimensionalperiodic dependence of constitutive parameters is treated. Theconstitutive parameters are assumed to vary continuously orstepwise in a cross section of a periodically repeating cell.The variation along a longitudinal coordinate z is arbitrary. Ageneral skew lattice is assumed. In the numerical examples, lowloss and high loss dielectric materials are considered. Theproblem is solved by expanding the .elds and constitutiveparameters in quasi-periodic and periodic functionsrespectively, which are inserted into Maxwell’s equations.Through various inner products de.ned with respect to the cell,and elimination of the longitudinal vector components, a linearsystem of ordinary di.erential equations for the transversecomponents of the .elds is obtained. After introducing apropagator, which maps the .elds from one transverse plane toanother, the system is solved by backward integration.Conventional thin metallic FSS screens of patch or aperturetype are included by obtaining generalised transmission andre.ection matrices for these surfaces. The transmission andre.ection matrices are obtained by solving spectral domainintegral equations. Comparisons of the obtained results aremade with experimental results (in one particular case), andwith results obtained using a computer code based on afundamentally di.erent time domain approach. Scattering from thin singly curved structures consisting ofdielectric materials periodic in one dimension is alsoconsidered. Both the thickness and the period are assumed to besmall. The .elds are expanded in an asymptotic power series inthe thickness of the structure, and a scaled wave equation issolved. A propagator mapping the tangential .elds from one sideto the other of the structure is derived. An impedance boundarycondition for the structure coated on a perfect electricconductor is obtained. Keywords:electromagnetic scattering, periodicstructure, frequency selective structure, frequency selectivesurface, grating, coupled wave analysis, electromagneticbandgap, photonic bandgap, asymptotic boundary condition,impedance boundary condition, spectral domain method,homogenisation
4

Influence of Alloy Elements on Selective Oxidation and Galvanizability of Dual Phase Steels

Wang, Hung-Ping 17 July 2008 (has links)
none
5

Scattering and propagation of electromagnetic waves in planar and curved periodic structures - applications to plane wave filters, plane wave absorbers and impedance surfaces

Forslund, Ola January 2004 (has links)
<p>The subject of this thesis is scattering of electromagneticwaves from planar and curved periodic structures. The problemspresented are solved in the frequency domain.</p><p>Scattering from planar structures with two-dimensionalperiodic dependence of constitutive parameters is treated. Theconstitutive parameters are assumed to vary continuously orstepwise in a cross section of a periodically repeating cell.The variation along a longitudinal coordinate z is arbitrary. Ageneral skew lattice is assumed. In the numerical examples, lowloss and high loss dielectric materials are considered. Theproblem is solved by expanding the .elds and constitutiveparameters in quasi-periodic and periodic functionsrespectively, which are inserted into Maxwell’s equations.Through various inner products de.ned with respect to the cell,and elimination of the longitudinal vector components, a linearsystem of ordinary di.erential equations for the transversecomponents of the .elds is obtained. After introducing apropagator, which maps the .elds from one transverse plane toanother, the system is solved by backward integration.Conventional thin metallic FSS screens of patch or aperturetype are included by obtaining generalised transmission andre.ection matrices for these surfaces. The transmission andre.ection matrices are obtained by solving spectral domainintegral equations. Comparisons of the obtained results aremade with experimental results (in one particular case), andwith results obtained using a computer code based on afundamentally di.erent time domain approach.</p><p>Scattering from thin singly curved structures consisting ofdielectric materials periodic in one dimension is alsoconsidered. Both the thickness and the period are assumed to besmall. The .elds are expanded in an asymptotic power series inthe thickness of the structure, and a scaled wave equation issolved. A propagator mapping the tangential .elds from one sideto the other of the structure is derived. An impedance boundarycondition for the structure coated on a perfect electricconductor is obtained.</p><p><b>Keywords:</b>electromagnetic scattering, periodicstructure, frequency selective structure, frequency selectivesurface, grating, coupled wave analysis, electromagneticbandgap, photonic bandgap, asymptotic boundary condition,impedance boundary condition, spectral domain method,homogenisation</p>
6

Design And Demonstration Of Meanderline Retarders At Infrared Frequencies

Tharp, Jeffrey Scott 01 January 2007 (has links)
Meanderline structures are widely used as engineered birefringent materials for waveplates and retarders at radiofrequencies, and have been previously demonstrated at frequencies up to 90 GHz in the millimeter-wave band. In this dissertation, we present results related to the modeling, fabrication, and experimental characterization of meanderlines across the range from 30 to 100 THz, in the long-wave and mid-wave infrared bands. Specific issues addressed in these new designs include spectral dispersion and angular dependence of the retardance, as well as axial ratio and throughput. The impact resulting from the infrared properties of the metals and dielectrics is explicitly included throughout. Several novel applications are identified, including integrated circular polarizers, reflective waveplates, and large-area polarization tags.
7

Spectrally Selective Solar Absorbing Coatings Prepared by dc Magnetron Sputtering

Zhao, Shuxi January 2007 (has links)
<p>Spectrally selective solar absorber using composite Ni-NiO as coating materials was studied. Samples were prepared by dc magnetron sputtering unit named <i>Rulle</i>, which is a miniature copy of an industrial roll-coater unit. Using asymmetric location of the oxygen nozzele, it is possible to form the desired metallic concentration distribution along the sputtering zone under optimized conditions. This distribution can be transferred into a graded film profile by moving the substrate, obtaining good spectral selectivity. For specified mechanical settings (such as locations of gas sprays, target and pump positions etc.), the ratio of used oxygen flow to the corresponding critical oxygen flow, <b>RO</b>, is a dimensionless parameter to control the zone specification. The optimal value is around 0.80 for the <i>Rulle</i>. Optimized zone shows properties with two main parts: the metallic composite part of varied nickel volume fraction and the dielectric part. Two parts of the sputtering zone can form a graded absorbing layer with the right ratio of base and middle layer by the moving substrate technique. Distribution of normalized conductivity, <i>NC</i>, along the absorbing sputtering zone is a simple and good specification of zone property. Profile of graded film prepared by the moving substrate technique can be tailored according to <i>NC</i> distribution. XRD and XPS study confirms the <i>NC</i> results. Simulation reveals that absorption should mainly rely on the intrinsic, but less on the interference mechanism. Used metallic volume fraction of Ni-NiO is 0.3 for main absorbing layer. The front surface reflection loss due to high refractive index can be reduced by adding a layer with low refractive index on the top. Simulation shows that three-layer coatings are a good and simple coating structure. High solar absorptance of 0.97 has been achieved with low thermal emittance of 0.05 by theoretical simulation as well as experimentally prepared samples.</p>
8

Spectrally Selective Solar Absorbing Coatings Prepared by dc Magnetron Sputtering

Zhao, Shuxi January 2007 (has links)
Spectrally selective solar absorber using composite Ni-NiO as coating materials was studied. Samples were prepared by dc magnetron sputtering unit named Rulle, which is a miniature copy of an industrial roll-coater unit. Using asymmetric location of the oxygen nozzele, it is possible to form the desired metallic concentration distribution along the sputtering zone under optimized conditions. This distribution can be transferred into a graded film profile by moving the substrate, obtaining good spectral selectivity. For specified mechanical settings (such as locations of gas sprays, target and pump positions etc.), the ratio of used oxygen flow to the corresponding critical oxygen flow, <b>RO</b>, is a dimensionless parameter to control the zone specification. The optimal value is around 0.80 for the Rulle. Optimized zone shows properties with two main parts: the metallic composite part of varied nickel volume fraction and the dielectric part. Two parts of the sputtering zone can form a graded absorbing layer with the right ratio of base and middle layer by the moving substrate technique. Distribution of normalized conductivity, NC, along the absorbing sputtering zone is a simple and good specification of zone property. Profile of graded film prepared by the moving substrate technique can be tailored according to NC distribution. XRD and XPS study confirms the NC results. Simulation reveals that absorption should mainly rely on the intrinsic, but less on the interference mechanism. Used metallic volume fraction of Ni-NiO is 0.3 for main absorbing layer. The front surface reflection loss due to high refractive index can be reduced by adding a layer with low refractive index on the top. Simulation shows that three-layer coatings are a good and simple coating structure. High solar absorptance of 0.97 has been achieved with low thermal emittance of 0.05 by theoretical simulation as well as experimentally prepared samples.
9

Reconfigurable Low Profile Antennas Using Tunable High Impedance Surfaces

Cure, David 01 January 2013 (has links)
This dissertation shows a detailed investigation on reconfigurable low profile antennas using tunable high impedance surfaces (HIS). The specific class of HIS used in this dissertation is called a frequency selective surface (FSS). This type of periodic structure is fabricated to create artificial magnetic conductors (AMCs) that exhibit properties similar to perfect magnetic conductors (PMCs). The antennas are intended for radiometric sensing applications in the biomedical field. For the particular sensing application of interest in this dissertation, the performance of the antenna sub-system is the most critical aspect of the radiometer design where characteristics such as small size, light weight, conformability, simple integration, adjustment in response to adverse environmental loading, and the ability to block external radio frequency interference to maximize the detection sensitivity are desirable. The antenna designs in this dissertation are based on broadband dipole antennas over a tunable FSS to extend the usable frequency range. The main features of these antennas are the use of an FSS that does not include via connections to ground, their low profile and potentially conformal nature, high front-to-back radiation pattern ratio, and the ability to dynamically adjust the center frequency. The reduction of interlayer wiring on the tunable FSS minimizes the fabrication complexity and facilitates the use of flexible substrates. This dissertation aims to advance the state of the art in low profile tunable planar antennas. It shows a qualitative comparison between antennas backed with different unit cell geometries. It demonstrates the feasibility to use either semiconductor or ferroelectric thin film varactor-based tunable FSS to allow adjustment in the antenna frequency in response to environment loading in the near-field. Additionally, it illustrates how the coupling between antenna and HIS, and the impact of the varactor losses affect the antenna performance and it shows solutions to compensate these adverse effects. Novel hybrid manufacturing approaches to achieve flexibility on electrically thick antennas that could be transitioned to thin-film microelectronics are also presented. The semiconductor and ferroelectric varactor-based tunable low profile antennas demonstrated tunability from 2.2 GHz to 2.65 GHz with instantaneous bandwidths greater than 50 MHz within the tuning range. The antennas had maximum thicknesses of λ/45 at the central frequency and front to back-lobe radiation ratios of approximately 15dB. They also showed impedance match improvement in the presence of a Human Core Model (HCM) phantom at close proximity distances of the order of 10-20 mm. In addition, the use of thin film ferroelectric Barium Strontium Titanate (BST) varactors in the FSS layer enabled an antenna that had smaller size, lower cost and less weight compared to the commercially available options. The challenging problems of fabricating robust flexible antennas are also addressed and novel solutions are proposed. Two different types of flexible antennas were designed and built. A series of flexible microstrip antennas with slotted grounds which demonstrated to be robust and have 42% less mass than typically used technologies (e.g., microstrip antennas fabricated on Rogers® RT6010, RT/duroid® 5880, etc.); and flexible ferroelectric based tunable low profile antennas that showed tunability from 2.42 GHz to 2.66 GHz using overlapping metallic plates instead of a continuous ground plane. The bending test results demonstrated that, by placing cuts on the ground plane or using overlapping metallic layers that resemble fish scales, it was possible to create highly conductive surfaces that were extremely flexible even when attached to other solid materials. These new approaches were used to overcome limitations commonly encountered in the design of antennas that are intended for use on non-flat surfaces. The material presented in this dissertation represents the first investigation of reconfigurable low profile antennas using tunable high impedance surfaces where the desired electromagnetic performance as well as additional relevant features such as robustness, low weight, low cost and low complexity were demonstrated.
10

A High-Gain Planar Dipole Antenna for Ultra-Wideband Applications

Shadrokh, Shahin 31 March 2014 (has links)
In this thesis, a low-profile, high-gain, ultra-wideband (UWB) planar dipole antenna is presented for radar imaging applications. The antenna is loaded with open complementary double concentric split-hexagonal-ring resonators (LC tank) and chip resistors, and backed with a novel double-layer FSS reflector for gain enhancement. A broadband microstrip to parallel-plate transformer is designed as the feeding structure of the antenna to provide impedance matching and balanced-to-unbalanced transition. The measurement results show the proposed antenna operates over the frequency bandwidth of 0.65-3.8 GHz with S11< -10 dB (VSWR) and smooth gains in the range of 6.2-9 dBi.

Page generated in 0.055 seconds