• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DESIGN OF A LORENTZ, SLOTLESS SELF-BEARING MOTOR FOR SPACE APPLICATIONS

Steele, Barrett Alan 01 January 2003 (has links)
The harsh conditions of space, the stringent requirements for orbiting devices, and the increasing precision pointing requirements of many space applications demand an actuator that can provide necessary force while using less space and power than its predecessors. Ideally, this actuator would be able to isolate vibrations and never fail due to mechanical wear, while pointing with unprecedented accuracy. This actuator has many space applications from satellite optical communications and satellite appendage positioning to orbiting telescopes. This thesis presents the method of design of such an actuator a self-bearing motor. The actuator uses Lorentz forces to generate both torque and bearing forces. It has a slotless winding configuration with four sets of three-phase currents. A stand-alone software application, LFMD, was written to automatically optimize and configure such a motor according to a designers application requirements. The optimization is done on the bases of minimum powerloss, minimum motor outer diameter, minimum motor mass, and minimum length. Using that program, two sample space applications are analyzed and applicable motor configurations are presented.
2

Simulation of a Self-bearing Cone-shaped Lorentz-type Electrical Machine

Ögren, Jim January 2013 (has links)
Self-bearing machines for kinetic energy storage have the advantage of integrating the magnetic bearing in the stator/rotor configuration, which reduces the number of mechanical components needed compared with using separated active magnetic bearings. This master's thesis focus on building a MATLAB/Simulink simulation model for a self-bearing cone-shaped Lorenz-type electrical machine. The concept has already been verified analytically but no dynamic simulations have been made. The system was modeled as a negative feedback system with PID controllers to balance the rotor. Disturbances as signal noise, external forces and torques were added to the system to estimate system robustness. Simulations showed stability and promising dynamics, the next step would be to build a prototype.
3

Fully Levitated Rotor Magnetically Suspended by Two Pole-Pair Separated Conical Motors

Kascak, Peter Eugene 27 July 2010 (has links)
No description available.

Page generated in 0.0672 seconds