Spelling suggestions: "subject:"selfcomplementary graph"" "subject:"selfcomplementarity graph""
1 |
Restrained Domination in Self-Complementary GraphsDesormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 01 May 2021 (has links)
A self-complementary graph is a graph isomorphic to its complement. A set S of vertices in a graph G is a restrained dominating set if every vertex in V(G) \ S is adjacent to a vertex in S and to a vertex in V(G) \ S. The restrained domination number of a graph G is the minimum cardinality of a restrained dominating set of G. In this paper, we study restrained domination in self-complementary graphs. In particular, we characterize the self-complementary graphs having equal domination and restrained domination numbers.
|
Page generated in 0.0859 seconds