Spelling suggestions: "subject:"desinhibition."" "subject:"deinhibition.""
1 |
DECIPHERING TRANSCRIPTIONAL ACTIVITY OF DROSOPHILA BICOID MORPHOGEN: SELECTIVITY AND REGULATIONZHAO, CHEN 03 December 2001 (has links)
No description available.
|
2 |
Chemoenzymatic Resolution in Dynamic Systems : Screening, Classification and Asymmetric SynthesisZhang, Yan January 2013 (has links)
This thesis is divided into four parts, all centered around Constitutional Dynamic Chemistry (CDC) and Dynamic Kinetic Resolution (DKR) using biocatalysts for selective transformations, and their applications in screening of bioactive compounds, organic synthesis, and enzyme classification. In part one, an introduction to CDC and DKR is presented, illustrating the basic concepts, practical considerations and potential applications of such dynamic systems, thus providing the background information for the studies in the following chapters. In part two, Dynamic Systemic Resolution (DSR), a concept based on CDC is exemplified. With enzyme-catalyzed transformations as external selection pressure, optimal structures can be selected and amplified from the system. This concept is expanded to various types of dynamic systems containing single, double cascade/parallel, and multiple reversible reactions. In addition, the substrate selectivity and catalytic promiscuity of target enzymes are also investigated. In part three, DKR protocols using reversible reactions for substrate racemizations are illustrated. Biocatalysts are here employed for asymmetric transformations, resulting in efficient synthetic pathways for enantioenriched organic compounds. Part four demonstrates two unique applications of CDC: one resulting in enzyme classification by use of pattern recognition methodology; the other involving enzyme self-inhibition through in situ transformation of stealth inhibitors employing the catalytic activity of the target enzyme. / <p>QC 20130614</p>
|
3 |
Dynamic Systems for Screening, Control and Identification of Protein-Ligand InteractionsLarsson, Rikard January 2008 (has links)
Dynamic systems for screening, control and identification of different protein-ligand interactions are presented. Dynamic chemistry is used to produce new compounds/constituents in situ that can interact with a target molecule. Several entities can be introduced at the same time and interact with one another. These molecules make a dynamic combinatorial library (DCL) which is used in dynamic combinatorial chemistry (DCC). DCC is a recently introduced approach to generate dynamically interchanging libraries of compounds. These libraries are made of different building blocks that reversibly interact with one another and spontaneously assemble to encompass all possible combinations. If a target molecule, for instance a receptor is added to the system and one or more molecules show affinity to the target species, these compounds will, according to Le Châtelier´s principle, be amplified on the expense of the other non-bonding constituents. To further advance the technique, especially when biological systems are targeted, new reaction types and new screening methods are necessary. This thesis describes the development of different reversible reactions, thiol/disulfide interchange, transthiolesterification and the nitroaldol (Henry) reaction as means of generating reversible covalent bond reactions. Two different types of target proteins are used, enzymes belonging to the hydrolase family and the plant lectin Concanavalin A. Dynamic combinatorial resolution (DCR) is presented. This new concept relies on the consecutive kinetic resolution of dynamic combinatorial libraries, leading to complete amplification and control of dynamically interchangeable processes. By applying a kinetically controlled step to a thermodynamically controlled system, complete transformation and amplification can be obtained. The concept has been demonstrated by developing transthiolesterification and nitroaldol exchange reactions to generate diversity, forming libraries under thermodynamic control, and used in one-pot processes with kinetically controlled enzyme-mediated resolution. The results demonstrate that the reaction types are useful for the generation of dynamic libraries, and that the dynamic combinatorial resolution concept is highly valuable for efficient substrate identification, asymmetric synthesis, and library screening. The thesis also describes three other dynamic chemistry protocols. The first one describes dynamic kinetic resolution (DKR) of nitroaldol adducts by combined lipase catalysis. The second one describes finding lectin inhibitors from a glycodisulfide library and the third one describes finding an inhibitor of acetylcholinesterase using a tandem driven dynamic self-inhibition approach. / <p>QC 20100818</p>
|
4 |
児童の自己抑制行動尺度の作成金, 慶美, Kim, Kyoung-mi, 伊藤, 義美, Ito, Yoshimi 25 March 2003 (has links)
No description available.
|
Page generated in 0.0669 seconds