• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental study on turbulent boundary-layer flows with wall transpiration

Ferro, Marco January 2017 (has links)
Wall transpiration, in the form of wall-normal suction or blowing through a permeable wall, is a relatively simple and effective technique to control the behaviour of a boundary layer. For its potential applications for laminar-turbulent transition and separation delay (suction) or for turbulent drag reduction and thermal protection (blowing), wall transpiration has over the past decades been the topic of a significant amount of studies. However, as far as the turbulent regime is concerned, fundamental understanding of the phenomena occurring in the boundary layer in presence of wall transpiration is limited and considerable disagreements persist even on the description of basic quantities, such as the mean streamwise velocity, for the rather simplified case of flat-plate boundary-layer flows without pressure gradients. In order to provide new experimental data on suction and blowing boundary layers, an experimental apparatus was designed and brought into operation. The perforated region spans the whole 1.2 m of the test-section width and with its streamwise extent of 6.5 m is significantly longer than previous studies, allowing for a better investigation of the spatial development of the boundary layer. The quality of the experimental setup and measurement procedures was verified with extensive testing, including benchmarking against previous results on a canonical zero-pressure-gradient turbulent boundary layer (ZPG TBL) and on a laminar asymptotic suction boundary layer. The present experimental results on ZPG turbulent suction boundary layers show that it is possible to experimentally realize a turbulent asymptotic suction boundary layer (TASBL) where the boundary layer mean-velocity profile becomes independent of the streamwise location, so that the suction rate constitutes the only control parameter. TASBLs show a mean-velocity profile with a large logarithmic region and without the existence of a clear wake region. If outer scaling is adopted, using the free-stream velocity and the boundary layer thickness (δ99) as characteristic velocity and length scale respectively, the logarithmic region is described by a slope Ao=0.064 and an intercept Bo=0.994, independently from the suction rate (Γ). Relaminarization of an initially turbulent boundary layer is observed for Γ&gt;3.70×10−3. Wall suction is responsible for a strong damping of the velocity fluctuations, with a decrease of the near-wall peak of the velocity-variance profile ranging from 50% to 65% when compared to a canonical ZPG TBL at comparable Reτ. This decrease in the turbulent activity appears to be explained by an increased stability of the near-wall streaks. Measurements on ZPG blowing boundary layers were conducted for blowing rates ranging between 0.1% and 0.37% of the free-stream velocity and cover the range of momentum thickness Reynolds number 10000&lt;Reθ&lt;36000. Wall-normal blowing strongly modifies the shape of the boundary-layer mean-velocity profile. As the blowing rate is increased, the clear logarithmic region characterizing the canonical ZPG TBLs gradually disappears. A good overlap among the mean velocity-defect profiles of the canonical ZPG TBLs and of the blowing boundary layers for all the Re number and blowing rates considered is obtained when normalization with the Zagarola-Smits velocity scale is adopted. Wall blowing enhances the intensity of the velocity fluctuations, especially in the outer region. At sufficiently high blowing rates and Reynolds number, the outer peak in the streamwise-velocity fluctuations surpasses in magnitude the near-wall peak, which eventually disappears. / Genom att använda sig av genomströmmande ytor, med sugning eller blåsning, kan man relativt enkelt och effektivt påverka ett gränsskikts tillstånd. Genom sin potential att påverka olika strömningsfysikaliska fenomen så som att senarelägga både avlösning och omslaget från laminär till turbulent strömning (genom sugning) eller som att exempelvis minska luftmotståndet i turbulenta gränsskikt och ge kyleffekt (genom blåsning), så har ett otaligt antal studier genomförts på området de senaste decennierna. Trots detta så är den grundläggande förståelsen bristfällig för de strömningsfenomen som inträffar i turbulenta gränsskikt över genomströmmande ytor. Det råder stora meningsskiljaktigheter om de mest elementära strömningskvantiteterna, såsom medelhastigheten, när sugning och blåsning tillämpas även i det mest förenklade gränsskiktsfallet nämligen det som utvecklar sig över en plan platta utan tryckgradient. För att ta fram nya experimentella data på gränsskikt med sugning och blåsning genom ytan så har vi designat en ny experimentell uppställning samt tagit den i bruk.Den genomströmmande ytan spänner över hela bredden av vindtunnelns mätsträcka (1.2 m) och är 6.5 m lång i strömningsriktningen och är därmed betydligt längre än vad som använts i tidigare studier. Detta gör det möjligt att bättre utforska gränsskiktet som utvecklas över ytan i strömningsriktningen. Kvaliteten på den experimentella uppställningen och valda mätprocedurerna har verifierats genom omfattande tester, som även inkluderar benchmarking mot tidigare resultat på turbulenta gränsskikt utan tryckgradient eller blåsning/sugning och på laminära asymptotiska sugningsgränsskikt. De experimentella resultaten på turbulenta gränsskikt med sugning bekräftar för första gången att det är möjligt att experimentellt sätta upp ett turbulent asymptotiskt sugningsgränsskikt där gränsskiktets medelhastighetsprofil blir oberoende av strömningsriktningen och där sugningshastigheten utgör den enda kontrollparametern. Det turbulenta asymptotiska sugningsgränsskiktet visar sig ha en medelhastighetsprofil normalt mot ytan med en lång logaritmisk region och utan förekomsten av en yttre vakregion. Om man använder yttre skalning av medelhastigheten, med friströmshastigheten och gränsskiktstjockleken som karaktäristisk hastighet respektive längdskala, så kan det logaritmiska området beskrivas med en lutning på Ao=0.064 och ett korsande värde med y-axeln på Bo=0.994, som är oberoende av sugningshastigheten. Om sugningshasigheten normaliserad med friströmshastigheten överskrider värdet 3.70x10^-3 så återgår det ursprungligen turbulenta gränsskiktet till att vara laminärt. Sugningen genom väggen dämpar hastighetsfluktuationerna i gränsskiktet med upp till 50-60% vid direkt jämförelse av det inre toppvärdet i ett turbulent gränsskikt utan sugning och vid jämförbart Reynolds tal. Denna minskning av turbulent aktivitet verkar härstamma från en ökad stabilitet av hastighetsstråken närmast ytan. Mätningar på turbulenta gränsskikt med blåsning har genomförts för blåsningshastigheter mellan 0.1 och 0.37% av friströmshastigheten och täcker Reynoldstalområdet (10-36)x10^3, med Reynolds tal baserat på rörelsemängds-tjockleken. Vid blåsning genom ytan får man en stark modifiering av formen på hastighetesfördelningen genom gränsskiktet. När blåsningshastigheten ökar så kommer till slut den logaritmiska regionen av medelhastigheten, karaktäristisk för turbulent gränsskikt utan blåsning, att gradvis försvinna. God överens-stämmelse av medelhastighetsprofiler mellan turbulenta gränsskikt med och utan blåsning erhålls för alla Reynoldstal och blåsningshastigheter när profilerna normaliseras med Zagarola-Smits hastighetsskala. Blåsning vid väggen ökar intensiteten av hastighetsfluktuationerna, speciellt i den yttre regionen av gränsskiktet. Vid riktigt höga blåsningshastigheter och Reynoldstal så kommer den yttre toppen av hastighetsfluktuationer i gränsskiktet att överskrida den inre toppen, som i sig gradvis försvinner. / <p>QC 20171101</p>

Page generated in 0.0854 seconds