• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some structures interpretable in the ring of continuous semi-algebraic functions on a curve

Phillips, Laura Rose January 2015 (has links)
No description available.
2

Applied Topology and Algorithmic Semi-Algebraic Geometry

Negin Karisani (12407755) 20 April 2022 (has links)
<p>Applied topology is a rapidly growing discipline aiming at using ideas coming from algebraic topology to solve problems in the real world, including analyzing point cloud data, shape analysis, etc. Semi-algebraic geometry deals with studying properties of semi-algebraic sets that are subsets of $\mathbb{R}^n$ and defined in terms of polynomial inequalities. Semi-algebraic sets are ubiquitous in applications in areas such as modeling, motion planning, etc. Developing efficient algorithms for computing topological invariants of semi-algebraic sets is a rich and well-developed field.</p> <p>However, applied topology has thrown up new invariants---such as persistent homology and barcodes---which give us new ways of looking at the topology of semi-algebraic sets. In this thesis, we investigate the interplay between these two areas. We aim to develop new efficient algorithms for computing topological invariants of semi-algebraic sets, such as persistent homology, and to develop new mathematical tools to make such algorithms possible.</p>
3

Efficient Computation of Reeb Spaces and First Homology Groups

Sarah B Percival (11205636) 29 July 2021 (has links)
This thesis studies problems in computational topology through the lens of semi-algebraic geometry. We first give an algorithm for computing a semi-algebraic basis for the first homology group, H1(S,F), with coefficients in a field F, of any given semi-algebraic set S⊂Rk defined by a closed formula. The complexity of the algorithm is bounded singly exponentially. More precisely, if the given quantifier-free formula involves s polynomials whose degrees are bounded by d, the complexity of the algorithm is bounded by (sd)<sup>kO</sup><sup>(1)</sup>.This algorithm generalizes well known algorithms having singly exponential complexity for computing a semi-algebraic basis of the zero-th homology group of semi-algebraic sets, which is equivalent to the problem of computing a set of points meeting every semi-algebraically connected component of the given semi-algebraic set at a unique point. We then turn our attention to the Reeb graph, a tool from Morse theory which has recently found use in applied topology due to its ability to track the changes in connectivity of level sets of a function. The roadmap of a set, a construction that arises in semi-algebraic geometry, is a one-dimensional set that encodes information about the connected components of a set. In this thesis, we show that the Reeb graph and, more generally, the Reeb space, of a semi-algebraic set is homeomorphic to a semi-algebraic set, which opens up the algorithmic problem of computing a semi-algebraic description of the Reeb graph. We present an algorithm with singly-exponential complexity that realizes the Reeb graph of a function f:X→Y as a semi-algebraic quotient using the roadmap of X with respect to f.

Page generated in 0.0392 seconds