• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulating Enzyme Functions by Semi-Rational Redesign and Chemical Modifications : A Study on Mu-class Glutathione Transferases

Norrgård, Malena A January 2011 (has links)
Today, enzymes are extensively used for many industrial applications, this includes bulk and fine-chemical synthesis, pharmaceuticals and consumer products. Though Nature has perfected enzymes for many millions of years, they seldom reach industrial performance targets. Natural enzymes could benefit from protein redesign experiments to gain novel functions or optimize existing functions. Glutathione transferases (GSTs) are detoxification enzymes, they also display disparate functions. Two Mu-class GSTs, M1-1 and M2-2, are closely related but display dissimilar substrate selectivity profiles. Saturation mutagenesis of a previously recognized hypervariable amino acid in GST M2-2, generated twenty enzyme variants with altered substrate selectivity profiles, as well as modified thermostabilities and expressivities. This indicates an evolutionary significance; GST Mu-class enzymes could easily alter functions in a duplicate gene by a single-point mutation. To further identify residues responsible for substrate selectivity in the GST M2-2 active site, three residues were chosen for iterative saturation mutagenesis. Mutations in position10, identified as highly conserved, rendered enzyme variants with substrate selectivity profiles resembling that of specialist enzymes. Ile10 could be conserved to sustain the broad substrate acceptance displayed by GST Mu-class enzymes. Enzymes are constructed from primarily twenty amino acids, it is a reasonable assumption that expansion of the amino acid repertoire could result in functional properties that cannot be accomplished with the natural set of building blocks. A combination approach of site-directed mutagenesis and chemical modifications in GST M2-2 and GST M1-1 resulted in novel enzyme variants that displayed altered substrate selectivity patterns as well as improved enantioselectivities. The results presented in this thesis demonstrate the use of different protein redesign techniques to modulate various functions in Mu-class GSTs. These techniques could be useful in search of optimized enzyme variants for industrial targets. / biokemi och organisk kemi

Page generated in 0.0853 seconds