Spelling suggestions: "subject:"definite optimization"" "subject:"indefinite optimization""
1 |
Geometric Ramifications of the Lovász Theta Function and Their Interplay with Dualityde Carli Silva, Marcel Kenji January 2013 (has links)
The Lovasz theta function and the associated convex sets known as theta bodies are fundamental objects in combinatorial and
semidefinite optimization. They are accompanied by a rich duality theory and
deep connections to the geometric concept of orthonormal representations of graphs. In this thesis, we investigate several ramifications of the theory underlying these objects, including those arising from the illuminating viewpoint of duality. We study some optimization problems over unit-distance representations of graphs, which are intimately related to the Lovasz theta function and orthonormal representations. We also strengthen some known results about dual descriptions of theta bodies and their variants. Our main goal throughout the thesis is to lay some of the foundations for using semidefinite optimization and convex analysis in a way analogous to how polyhedral combinatorics has been using linear optimization to prove min-max theorems.
A unit-distance representation of a graph $G$ maps its nodes to some Euclidean space so that adjacent nodes are sent to pairs of points at distance one. The hypersphere number of $G$, denoted by $t(G)$, is the (square of the) minimum radius of a hypersphere that contains a unit-distance representation of $G$. Lovasz proved a min-max relation describing $t(G)$ as a function of $\vartheta(\overline{G})$, the theta number of the complement of $G$. This relation provides a dictionary between unit-distance representations in hyperspheres and orthonormal representations, which we exploit in a number of ways: we develop a weighted generalization of $t(G)$, parallel to the weighted version of $\vartheta$; we prove that $t(G)$ is equal to the (square of the) minimum radius of an Euclidean ball that contains a unit-distance representation of $G$; we abstract some properties of $\vartheta$ that yield the famous Sandwich Theorem and use them to define another weighted generalization of $t(G)$, called ellipsoidal number of $G$, where the unit-distance representation of $G$ is required to be in an ellipsoid of a given shape with minimum volume. We determine an analytic formula for the ellipsoidal number of the complete graph on $n$ nodes whenever there exists a Hadamard matrix of order $n$.
We then study several duality aspects of the description of the theta body $\operatorname{TH}(G)$. For a graph $G$, the convex corner $\operatorname{TH}(G)$ is known to be the projection of a certain convex set, denoted by $\widehat{\operatorname{TH}}(G)$, which lies in a much higher-dimensional matrix space. We prove that the vertices of $\widehat{\operatorname{TH}}(G)$ are precisely the symmetric tensors of incidence vectors of stable sets in $G$, thus broadly generalizing previous results about vertices of the elliptope due to Laurent and Poljak from 1995. Along the way, we also identify all the vertices of several variants of $\widehat{\operatorname{TH}}(G)$ and of the elliptope. Next we introduce an axiomatic framework for studying generalized theta bodies, based on the concept of diagonally scaling invariant cones, which allows us to prove in a unified way several characterizations of $\vartheta$ and the variants $\vartheta'$ and $\vartheta^+$, introduced independently by Schrijver, and by McEliece, Rodemich, and Rumsey in the late 1970's, and by Szegedy in 1994. The beautiful duality equation which states that the antiblocker of $\operatorname{TH}(G)$ is $\operatorname{TH}(\overline{G})$ is extended to this setting. The framework allows us to treat the stable set polytope and its classical polyhedral relaxations as generalized theta bodies, using the completely positive cone and its dual, and it allows us to derive a (weighted generalization of a) copositive formulation for the fractional chromatic number due to Dukanovic and Rendl in 2010 from a completely positive formulation for the stability number due to de Klerk and Pasechnik in 2002. Finally, we study a non-convex constraint for semidefinite programs (SDPs) that may be regarded as analogous to the usual integrality constraint for linear programs. When applied to certain classical SDPs, it specializes to the standard rank-one constraint. More importantly, the non-convex constraint also applies to the dual SDP, and for a certain SDP formulation of $\vartheta$, the modified dual yields precisely the clique covering number. This opens the way to study some exactness properties of SDP relaxations for combinatorial optimization problems akin to the corresponding classical notions from polyhedral combinatorics, as well as approximation algorithms based on SDP relaxations.
|
2 |
Geometric Ramifications of the Lovász Theta Function and Their Interplay with Dualityde Carli Silva, Marcel Kenji January 2013 (has links)
The Lovasz theta function and the associated convex sets known as theta bodies are fundamental objects in combinatorial and
semidefinite optimization. They are accompanied by a rich duality theory and
deep connections to the geometric concept of orthonormal representations of graphs. In this thesis, we investigate several ramifications of the theory underlying these objects, including those arising from the illuminating viewpoint of duality. We study some optimization problems over unit-distance representations of graphs, which are intimately related to the Lovasz theta function and orthonormal representations. We also strengthen some known results about dual descriptions of theta bodies and their variants. Our main goal throughout the thesis is to lay some of the foundations for using semidefinite optimization and convex analysis in a way analogous to how polyhedral combinatorics has been using linear optimization to prove min-max theorems.
A unit-distance representation of a graph $G$ maps its nodes to some Euclidean space so that adjacent nodes are sent to pairs of points at distance one. The hypersphere number of $G$, denoted by $t(G)$, is the (square of the) minimum radius of a hypersphere that contains a unit-distance representation of $G$. Lovasz proved a min-max relation describing $t(G)$ as a function of $\vartheta(\overline{G})$, the theta number of the complement of $G$. This relation provides a dictionary between unit-distance representations in hyperspheres and orthonormal representations, which we exploit in a number of ways: we develop a weighted generalization of $t(G)$, parallel to the weighted version of $\vartheta$; we prove that $t(G)$ is equal to the (square of the) minimum radius of an Euclidean ball that contains a unit-distance representation of $G$; we abstract some properties of $\vartheta$ that yield the famous Sandwich Theorem and use them to define another weighted generalization of $t(G)$, called ellipsoidal number of $G$, where the unit-distance representation of $G$ is required to be in an ellipsoid of a given shape with minimum volume. We determine an analytic formula for the ellipsoidal number of the complete graph on $n$ nodes whenever there exists a Hadamard matrix of order $n$.
We then study several duality aspects of the description of the theta body $\operatorname{TH}(G)$. For a graph $G$, the convex corner $\operatorname{TH}(G)$ is known to be the projection of a certain convex set, denoted by $\widehat{\operatorname{TH}}(G)$, which lies in a much higher-dimensional matrix space. We prove that the vertices of $\widehat{\operatorname{TH}}(G)$ are precisely the symmetric tensors of incidence vectors of stable sets in $G$, thus broadly generalizing previous results about vertices of the elliptope due to Laurent and Poljak from 1995. Along the way, we also identify all the vertices of several variants of $\widehat{\operatorname{TH}}(G)$ and of the elliptope. Next we introduce an axiomatic framework for studying generalized theta bodies, based on the concept of diagonally scaling invariant cones, which allows us to prove in a unified way several characterizations of $\vartheta$ and the variants $\vartheta'$ and $\vartheta^+$, introduced independently by Schrijver, and by McEliece, Rodemich, and Rumsey in the late 1970's, and by Szegedy in 1994. The beautiful duality equation which states that the antiblocker of $\operatorname{TH}(G)$ is $\operatorname{TH}(\overline{G})$ is extended to this setting. The framework allows us to treat the stable set polytope and its classical polyhedral relaxations as generalized theta bodies, using the completely positive cone and its dual, and it allows us to derive a (weighted generalization of a) copositive formulation for the fractional chromatic number due to Dukanovic and Rendl in 2010 from a completely positive formulation for the stability number due to de Klerk and Pasechnik in 2002. Finally, we study a non-convex constraint for semidefinite programs (SDPs) that may be regarded as analogous to the usual integrality constraint for linear programs. When applied to certain classical SDPs, it specializes to the standard rank-one constraint. More importantly, the non-convex constraint also applies to the dual SDP, and for a certain SDP formulation of $\vartheta$, the modified dual yields precisely the clique covering number. This opens the way to study some exactness properties of SDP relaxations for combinatorial optimization problems akin to the corresponding classical notions from polyhedral combinatorics, as well as approximation algorithms based on SDP relaxations.
|
3 |
Bounds on Linear PDEs via Semidefinite OptimizationBertsimas, Dimitris J., Caramanis, Constantine 01 1900 (has links)
Using recent progress on moment problems, and their connections with semidefinite optimization, we present in this paper a new methodology based on semidefinite optimization, to obtain a hierarchy of upper and lower bounds on both linear and certain nonlinear functionals defined on solutions of linear partial differential equations. We apply the proposed methods to examples of PDEs in one and two dimensions with very encouraging results. We also provide computation evidence that the semidefinite constraints are critically important in improving the quality of the bounds, that is without them the bounds are weak. / Singapore-MIT Alliance (SMA)
|
4 |
New Large Neighborhood Interior Point Methods For Semidefinite OptimizationLi, Yang January 2008 (has links)
<p>In this thesis, we extend the Ai-Zhang direction to the class of semidefinite
optimization problems. We define a new wide neighborhood N(τ1 ,τ2 ,η) and,
as usual, we utilize symmetric directions by scaling the Newton equation with
special matrices. After defining the "positive part" and the "negative part"
of a symmetric matrix, we solve the Newton equation with its right hand side
replaced first by its positive part and then by its negative part, respectively.
In this way, we obtain a decomposition of the usual Newton direction and use
different step lengths for each of them.</p><p>Starting with a feasible point (X^0 , y^0 , S^0) in N(τ1, τ2 , η ), the algorithm terminates
in at most 0(η√( κ∞n)log(1/ε) iterations, where κ∞ is a parameter
associated with the scaling matrix and ε is the required precision. To our best
knowledge, when the parameter η is a constant, this is the first large neighborhood
path-following Interior Point Method (IPM) with the same complexity
as small neighborhood path-following IPMs for semidefinite optimization that
use the Nesterov-Todd direction. In the case when η is chosen to be in the order
of √η, our complexity bound coincides with the known bound for classical
large neighborhood IPMs.</p><p>To make this thesis more accessible to readers who are new in this area, we
start with a brief introduction to IPMs and SDO. The basic concepts and
principles of IPMs and SDO are presented in Chapter 2 and 3.</p> / Thesis / Master of Applied Science (MASc)
|
5 |
Nonsmooth Newton’s Method and Semidefinite OptimizationSun, Jie 01 1900 (has links)
We introduce basic ideas of a nonsmooth Newton’s method and its application in solving semidefinite optimization (SDO) problems. In particular, the method can be used to solve both linear and nonlinear semidefinite complementarity problems. We also survey recent theoretical results in matrix functions and stability of SDO that are stemed from the research on the matrix form of the nonsmooth Newton’s method. / Singapore-MIT Alliance (SMA)
|
6 |
Sur l’identification des états produits par une source quantique maximalement décorréléePaquette, Serge-Olivier 08 1900 (has links)
No description available.
|
Page generated in 0.1326 seconds