• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Clusters and covers: geometric set cover algorithms

Gibson, Matthew Richard 01 May 2010 (has links)
The set cover problem is a well studied problem in computer science. The problem cannot be approximated to better than an log n-factor in polynomial time unless P = NP and has an O(log n)-factor approximation algorithm. We consider several special cases of the set cover problem in which geometry plays a key role. With geometric structure introduced to the problem, it may be possible to construct approximation algorithms with approximation ratios asymptotically better than log n. The first problem we consider is the decomposing coverings problem. Here, we consider a combinatorial problem: given a collection of points in the plane and a collection of objects in the plane such that each point is contained in at least k objects, partition the objects into as many sets as possible so that each set covers all of the points. We show that if the objects are translates of a convex polygon, then it is possible to partition the translates into Ω(k) covers. The second problem we consider is the planar sensor cover problem. This problem is a generalization of the decomposing coverings problem. We are given a collection of points in the plane and a collection of objects in the plane. Each of the objects can be thought of as a sensor. The sensors have a duration which can be thought of as the battery life of the sensor. The planar sensor cover problem is to schedule a start time to each of the sensors so that the points are covered by a sensor for as long as possible. We give a constant factor approximation for this problem. The key contribution to this result is a constant factor approximation to a one-dimensional version of the problem called the restricted strip cover (RSC) problem. Our result for RSC improves upon the previous best O(log log log n)-approximation, and our result for the planar sensor cover problem improves upon the previous best O(log n)-approximation. The next problem we consider is the metric clustering to minimize the sum of radii problem. Here, we are given an n-point metric (P,d) and an integer k > 0. We are interested in covering the points in P with at most k balls so that the sum of the radii of the balls is minimized. We give a randomized algorithm which solves the problem exactly in nO(log n log Δ) time, where Δ is the ratio of the maximum interpoint distance to the minimum interpoint distance. We also show that the problem is NP-hard, even in metrics induced by weighted planar graphs and when the metric has constant doubling dimension. The last problem we consider is the minimum dominating set problem for disk graphs. In this problem, we are given a set of disks in the plane, and we want to choose a minimum-cardinality subset of disks such that every disk is either in the set or intersects a disk in the set. For any ε > 0, we show that a simple local search algorithm is a (1+ ε)-approximation for the problem which improves upon the previous best O(log n)-approximation algorithm.
2

Algoritmos para o problema da cobertura por sensores / Algorithms for the sensor cover problem

Barbosa, Rafael da Ponte 12 December 2011 (has links)
Neste trabalho estudamos aspectos algorítmicos do Problema da Cobertura por Sensores. Em linhas gerais, este problema a entrada consiste em uma região a ser monitorada por um conjunto de sensores previamente posicionados, cada qual dotado de bateria com duração limitada, e o objetivo é atribuir a cada sensor um tempo de início, de modo que toda a região seja coberta o maior tempo possível. Focamos nosso estudo no caso unidimensional do problema, chamado Problema da Cobertura de Faixa Restrita, no qual a região a ser monitorada é um intervalo (da reta real). Estudamos diversas variantes, de acordo com os subintervalos que os sensores cobrem (se de tamanhos fixos ou variados), e de acordo com a duração das baterias (se uniformes ou não). Estudamos também o caso preemptivo: quando os sensores podem ser ligados mais de uma vez. Para este último caso, projetamos um algoritmo polinomial bem simples. O Problema da Cobertura de Faixa Restrita é NP-difícil no caso não-preemptivo em que os sensores têm bateria de duração variável. Para este caso, em 2009 Gibson e Varadarajan apresentaram um algoritmo polinomial que provaram ser uma 5-aproximação. Provamos que este algoritmo tem fator de aproximação 4, e mostramos que este fator é justo. Apresentamos também formulações lineares inteiras para este caso, e os resultados computacionais obtidos. / We study the algorithmic aspects of the Sensor Cover Problem. Broadly speaking, in this problem the input consists of a region to be covered by a set of sensors previously positioned, each one powered with a battery of limited duration, and the objective is to assign to each sensor an initial time, so as to cover the given region for as long as possible. We focus our study on the one-dimensional case of the problem, called Restricted Strip Cover Problem, in which the region to be covered is an interval (of the real line). We study several variants, according to the type of the subintervals the sensors cover (if they have fixed length or not), to the duration of the batteries (if uniform or not). We also study the preemptive case: when the sensors can be turned on and off more than once. For this case, we designed a simple polynomial-time algorithm. The Restricted Strip Cover Problem is NP-hard in the non-preemptive case in which the sensors have non-uniform duration batteries. For this case, in 2009 Gibson and Varadarajan designed a polynomial-time algorithm which they proved to be a 5-aproximation. We prove that this algorithm has approximation ratio 4, and show that this ratio is tight. We also present two integer linear formulations for this case, and report on the computational results obtained with this approach.
3

Algoritmos para o problema da cobertura por sensores / Algorithms for the sensor cover problem

Rafael da Ponte Barbosa 12 December 2011 (has links)
Neste trabalho estudamos aspectos algorítmicos do Problema da Cobertura por Sensores. Em linhas gerais, este problema a entrada consiste em uma região a ser monitorada por um conjunto de sensores previamente posicionados, cada qual dotado de bateria com duração limitada, e o objetivo é atribuir a cada sensor um tempo de início, de modo que toda a região seja coberta o maior tempo possível. Focamos nosso estudo no caso unidimensional do problema, chamado Problema da Cobertura de Faixa Restrita, no qual a região a ser monitorada é um intervalo (da reta real). Estudamos diversas variantes, de acordo com os subintervalos que os sensores cobrem (se de tamanhos fixos ou variados), e de acordo com a duração das baterias (se uniformes ou não). Estudamos também o caso preemptivo: quando os sensores podem ser ligados mais de uma vez. Para este último caso, projetamos um algoritmo polinomial bem simples. O Problema da Cobertura de Faixa Restrita é NP-difícil no caso não-preemptivo em que os sensores têm bateria de duração variável. Para este caso, em 2009 Gibson e Varadarajan apresentaram um algoritmo polinomial que provaram ser uma 5-aproximação. Provamos que este algoritmo tem fator de aproximação 4, e mostramos que este fator é justo. Apresentamos também formulações lineares inteiras para este caso, e os resultados computacionais obtidos. / We study the algorithmic aspects of the Sensor Cover Problem. Broadly speaking, in this problem the input consists of a region to be covered by a set of sensors previously positioned, each one powered with a battery of limited duration, and the objective is to assign to each sensor an initial time, so as to cover the given region for as long as possible. We focus our study on the one-dimensional case of the problem, called Restricted Strip Cover Problem, in which the region to be covered is an interval (of the real line). We study several variants, according to the type of the subintervals the sensors cover (if they have fixed length or not), to the duration of the batteries (if uniform or not). We also study the preemptive case: when the sensors can be turned on and off more than once. For this case, we designed a simple polynomial-time algorithm. The Restricted Strip Cover Problem is NP-hard in the non-preemptive case in which the sensors have non-uniform duration batteries. For this case, in 2009 Gibson and Varadarajan designed a polynomial-time algorithm which they proved to be a 5-aproximation. We prove that this algorithm has approximation ratio 4, and show that this ratio is tight. We also present two integer linear formulations for this case, and report on the computational results obtained with this approach.

Page generated in 0.0711 seconds