• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 284
  • 88
  • 46
  • 37
  • 27
  • 13
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 591
  • 591
  • 469
  • 104
  • 87
  • 82
  • 81
  • 81
  • 79
  • 63
  • 63
  • 61
  • 55
  • 49
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Algorithms and Protocols Enhancing Mobility Support for Wireless Sensor Networks Based on Bluetooth and Zigbee

García Castaño, Javier January 2006 (has links)
Mobile communication systems are experiencing a huge growth. While traditional communication paradigms deal with fixed networks, mobility raises a new set of questions, techniques, and solutions. This work focuses on wireless sensor networks (WSNs) where each node is a mobile device. The main objectives of this thesis have been to develop algorithms and protocols enabling WSNs with a special interest in overcoming mobility support limitations of standards such as Bluetooth and Zigbee. The contributions of this work may be divided in four major parts related to mobility support. The first part describes the implementation of local positioning services in Bluetooth since local positioning is not supported in Bluetooth v1.1. The obtained results are used in later implemented handover algorithms in terms of deciding when to perform the handover. Moreover local positioning information may be used in further developed routing protocols. The second part deals with handover as a solution to overcome the getting out of range problem. Algorithms for handover have been implemented enabling mobility in Bluetooth infrastructure networks. The principal achievement in this part is the significant reduction of handover latency since sensor cost and quality of service are directly affected by this parameter. The third part solves the routing problems originated with handovers. The main contribution of this part is the impact of the Bluetooth scatternet formation and routing protocols, for multi-hop data transmissions, in the system quality of service. The final part is a comparison between Bluetooth and Zigbee in terms of mobility support. The main outcome of this comparison resides on the conclusions, which can be used as a technology election guide. The main scientific contribution relies on the implementation of a mobile WSN with Bluetooth v1.1 inside the scope of the ”Multi Monitoring Medical Chip (M3C) for Homecare Applications” European Union project (Sixth Framework Program (FP6) Reference: 508291) offering multi-hop routing support and improvements in handover latencies with aid of local positioning services.
72

An Adjustable Cluster-based Routing Protocol for Wireless Sensor Networks

Lee, Yung-tai 29 August 2007 (has links)
Wireless sensor networks consist of many small sensor nodes with sensing, computation, and wireless communications capabilities. Recently, there have been numerous research results in the power consumption for routing protocol. Routing protocols in WSNs might difference depending on the application and network architecture. This paper focuses on reducing the power consumption for routing protocol of wireless sensor networks too. We present a routing protocol called ACRP. sensor nodes will organize many clusters voluntarily. Cluster heads will distribute time slot to the sensor nodes in the same cluster and sensor nodes will transmit data to cluster head in it¡¦s time slot. After the data had been aggregated by cluster heads, they will send the aggregated data to base station through the routing path that had been established. In addition, in order to lengthen the living time of wireless sensor network, the base station will periodically adjust the amount of sensor nodes in all clusters according to the cluster information.
73

Modeling, Analysis and Design of Wireless Sensor Network Protocols

Park, Pangun January 2011 (has links)
Wireless sensor networks (WSNs) have a tremendous potential to improve the efficiencyof many systems, for instance, in building automation and process control.Unfortunately, the current technology does not offer guaranteed energy efficiencyand reliability for closed-loop stability. The main contribution of this thesis is toprovide a modeling, analysis, and design framework for WSN protocols used in controlapplications. The protocols are designed to minimize the energy consumption ofthe network, while meeting reliability and delay requirements from the applicationlayer. The design relies on the analytical modeling of the protocol behavior.First, modeling of the slotted random access scheme of the IEEE 802.15.4medium access control (MAC) is investigated. For this protocol, which is commonlyemployed in WSN applications, a Markov chain model is used to derive theanalytical expressions of reliability, delay, and energy consumption. By using thismodel, an adaptive IEEE 802.15.4 MAC protocol is proposed. The protocol designis based on a constrained optimization problem where the objective function is theenergy consumption of the network, subject to constraints on reliability and packetdelay. The protocol is implemented and experimentally evaluated on a test-bed. Experimentalresults show that the proposed algorithm satisfies reliability and delayrequirements while ensuring a longer lifetime of the network under both stationaryand transient network conditions.Second, modeling and analysis of a hybrid IEEE 802.15.4 MAC combining theadvantages of a random access with contention with a time division multiple access(TDMA) without contention are presented. A Markov chain is used to model thestochastic behavior of random access and the deterministic behavior of TDMA.The model is validated by both theoretical analysis and Monte Carlo simulations.Using this new model, the network performance in terms of reliability, averagepacket delay, average queueing delay, and throughput is evaluated. It is shown thatthe probability density function of the number of received packets per superframefollows a Poisson distribution. Furthermore, it is determined under which conditionsthe time slot allocation mechanism of the IEEE 802.15.4 MAC is stable.Third, a new protocol for control applications, denoted Breath, is proposedwhere sensor nodes transmit information via multi-hop routing to a sink node. Theprotocol is based on the modeling of randomized routing, MAC, and duty-cycling.Analytical and experimental results show that Breath meets reliability and delayrequirements while exhibiting a nearly uniform distribution of the work load. TheBreath protocol has been implemented and experimentally evaluated on a test-bed.Finally, it is shown how the proposed WSN protocols can be used in controlapplications. A co-design between communication and control application layers isstudied by considering a constrained optimization problem, for which the objectivefunction is the energy consumption of the network and the constraints are thereliability and delay derived from the control cost. It is shown that the optimaltraffic load when either the communication throughput or control cost are optimizedis similar. / QC 20110217
74

Application of IEEE 802.15.4 for home network

Jonsson, Tobias, Acquaye, Gabriel January 2008 (has links)
<!--st1\:*{behavior:url(#ieooui) } -->&lt;!--[endif]--&gt; <!-- /* Font Definitions */ @font-face {font-family:Garamond; panose-1:2 2 4 4 3 3 1 1 8 3; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:647 0 0 0 159 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; mso-layout-grid-align:none; punctuation-wrap:simple; text-autospace:none; font-size:12.0pt; mso-bidi-font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:EN-GB; mso-fareast-language:EN-US;} @page Section1 {size:612.0pt 792.0pt; margin:70.85pt 70.85pt 70.85pt 70.85pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> To implement a utility wireless sensor network, investigation of different wireless protocols has been performed. The protocols are Bluetooth, Wi-Fi, IEEE 802.15.4 and Zigbee. Consecutively literature studies have made it comprehensible to understand the function of the protocols that are suitable for development of wireless sensor networks. The importance of low cost, low power, reliable and high-quality properties for long distances are significant. IEEE 802.15.4 and Zigbee protocol are proper to implement as a wireless sensor network.   To reduce the human efforts in the configuration of the system, a comfortable method is implemented to facilitate the procedure. The applied method is based on an automatic configuration of the system. The configuration and the decision taking are implemented in the software. The system is designed to avoid interference to other wireless networks with the possibilities of reconfiguration. A uniform hardware and software design with separate functions of the system decided by a subsequent command for configuration is preferable. This imposes an advantage that increases the flexible potential of the system when a uniform solution is implemented.   To support the basic communication principles and control of the system, a buffer implementation has been introduced. The functionality of decision taking is distributed, configured by system commands from the host system. Detecting of system commands requires a properly operating buffer management. In consideration to the power consumption in reference to battery utilizations, the settings of RF-module and microcontroller have a powerful impact to reduce the power consumption. All possibilities of hibernates and avoidance of unnecessarily transmitting, should be deactivated to minimize the power consumption.
75

Localization and Coverage in Wireless Ad Hoc Networks

Gribben, Jeremy 04 August 2011 (has links)
Localization and coverage are two important and closely related problems in wireless ad hoc networks. Localization aims to determine the physical locations of devices in a network, while coverage determines if a region of interest is sufficiently monitored by devices. Localization systems require a high degree of coverage for correct functioning, while coverage schemes typically require accurate location information. This thesis investigates the relationship between localization and coverage such that new schemes can be devised which integrate approaches found in each of these well studied problems. This work begins with a thorough review of the current literature on the subjects of localization and coverage. The localization scheduling problem is then introduced with the goal to allow as many devices as possible to enter deep sleep states to conserve energy and reduce message overhead, while maintaining sufficient network coverage for high localization accuracy. Initially this sufficient coverage level for localization is simply a minimum connectivity condition. An analytical method is then proposed to estimate the amount of localization error within a certain probability based on the theoretical lower bounds of location estimation. Error estimates can then be integrated into location dependent schemes to improve on their robustness to localization error. Location error estimation is then used by an improved scheduling scheme to determine the minimum number of reference devices required for accurate localization. Finally, an optimal coverage preserving sleep scheduling scheme is proposed which is robust to localization error, a condition which is ignored by most existing solutions. Simulation results show that with localization scheduling network lifetimes can be increased by several times and message overhead is reduced while maintaining negligible differences in localization error. Furthermore, results show that the proposed coverage preserving sleep scheduling scheme results in fewer active devices and coverage holes under the presence of localization error.
76

Cooperative localization based on received signal strength in wireless sensor network

Zheng, Jinfu 01 January 2010 (has links)
Localization accuracy based on RSS (Received Signal Strength) is notoriously inaccurate in the application of wireless sensor networks. RSS is subject to shadowing effects, which is signal attenuation caused by stationary objects in the radio propagation. RSS are actually the result of decay over distances, and random attenuation over different directions. RSS measurement is also affected by antenna orientation. Starting from extracting the statistical orders in the function relationship between RSS and distance, this thesis first shows how non-metric MDS (Multi-Dimensional Scaling) is the suitable method for cooperative localization. Then, several issues are presented and discussed in the application of non-metric MDS, including determining full connections to avoid flip ambiguities, leveraging the proper initial estimation to avert from local minimum solutions, and imposing structural information to bend the localization result to a priori knowledge. To evaluate the solution, data were acquired from different scenarios including accurate radio propagation model, indoor empirical test, and outside empirical test. Experiment results shows that non-metric MDS can only combat the small scale randomness in the shadowing effects. To combat the large scale ones, macro-diversity approaches are further presented including rotating the receiver’s antenna or collecting RSS from more than one mote in the same position. By averaging the measurements from these diversified receivers, simulation results and empirical tests show that shadowing effects can be greatly reduced. Also included in this thesis is how effective packet structures should be designed in the mote programming based on TinyOS to collect different sequences of RSS measurements and fuse them together. / UOIT
77

Localization and Coverage in Wireless Ad Hoc Networks

Gribben, Jeremy 04 August 2011 (has links)
Localization and coverage are two important and closely related problems in wireless ad hoc networks. Localization aims to determine the physical locations of devices in a network, while coverage determines if a region of interest is sufficiently monitored by devices. Localization systems require a high degree of coverage for correct functioning, while coverage schemes typically require accurate location information. This thesis investigates the relationship between localization and coverage such that new schemes can be devised which integrate approaches found in each of these well studied problems. This work begins with a thorough review of the current literature on the subjects of localization and coverage. The localization scheduling problem is then introduced with the goal to allow as many devices as possible to enter deep sleep states to conserve energy and reduce message overhead, while maintaining sufficient network coverage for high localization accuracy. Initially this sufficient coverage level for localization is simply a minimum connectivity condition. An analytical method is then proposed to estimate the amount of localization error within a certain probability based on the theoretical lower bounds of location estimation. Error estimates can then be integrated into location dependent schemes to improve on their robustness to localization error. Location error estimation is then used by an improved scheduling scheme to determine the minimum number of reference devices required for accurate localization. Finally, an optimal coverage preserving sleep scheduling scheme is proposed which is robust to localization error, a condition which is ignored by most existing solutions. Simulation results show that with localization scheduling network lifetimes can be increased by several times and message overhead is reduced while maintaining negligible differences in localization error. Furthermore, results show that the proposed coverage preserving sleep scheduling scheme results in fewer active devices and coverage holes under the presence of localization error.
78

Routing protocols for wireless sensor networks: A survey

Yang, Ying January 2013 (has links)
Wireless sensor networks(WSNs) are different to traditional networks and are highly dependent on applications, thus traditional routing protocols cannot be applied efficiently to the networks. As the variability of both the application and the network architecture, the majority of the attention, therefore, has been given to the routing protocols. This work surveys and evaluates state-of-the-art routing protocols based on many factors including energy efficiency, delay andcomplexity, and presents several classifications for the various approaches pursued. Additionally, more attention is paid to several routing protocols and their advantages and disadvantages and, indeed, this work implements two of selected protocols, LEACH and THVRG, on the OPNET, and compares them in many aspects based on a large amount of experimental data. The survey also provides a valuable framework for comparing new and existing routing protocols. According to the evaluation for the performance of the routing protocols, this thesis provides assistance in relation to further improving the performance in relation to routing protocols. Finally, future research strategies and trends in relation to routing technology in wireless sensor networks are also provided.
79

On Wireless Sensor Networks with Arbitary Correlated Sources

Mahboubi, Seyyed Hassan January 2008 (has links)
An achievable rate region for general wireless sensor networks is proposed. A general multi-source, multi-relay, multi-destination wireless sensor network with arbitrarily correlated sources is considered. Each node can sense some real phenomena and send its readings to one or more sinks (data gathering nodes) via some relays. It also can relay some correlated or independent readings of other nodes, simultaneously. In this problem the source and channel coding separation is not optimal and the information which each reading has about others nodes is destroyed in separation. Thus, a joint source channel coding scheme can be used. The problem consists of relay channels and multiple access channels with arbitrarily correlated sources. The proposed scheme is based on regular block Markov encoding/backward decoding and code division multiple-access (CDMA) and the result is a combination of multi-relay and multiple-access with correlated sources.
80

Wireless Sensor Network Setup : Wireless sensor motes embedded programing

Iqbal, Javed, Moughal, Farhan January 2010 (has links)
Exploitation of wireless sensor networks (WSNs) in ubiquitous computing environments is continuously increasing for gathering data. Contemporary distributed software systems on WSNs for pragmatic business applications have become extremely adaptive, dynamic, heterogeneous and large scaled. Management of such system is not trivial to fulfil these features, leading to more and more complex management and configuration. Along with encompassing state of art and novel techniques for such diversely dynamic system, in this thesis two alternative techniques namely “task initiation by command” and “run-time task deployment and processing” are compared, for such system’s setup and configuration. Both techniques have their own pros and cons which makes them suitable according to the requirements and contextual situations. A lot of effort has been put to make WSNs more and more efficient in terms of computations and power consumption. Hence comparative analysis of both techniques used in this report to setup and configure WSN can be a benchmark to lead towards most appropriate solution to compensate the need of efficient energy and resource consumption.Both alternative schemes are implemented to setup WSN on Sun Microsystems sunSPOT (Small Programmable Object Technology) sensor nodes which are embedded microcontrollers and programmed them in java (j2me). It performs radio communication between wireless sensors and host via sink node also called base station, along with over the air run-time management of sensors. SunSPOTs built in libraries and KSN libraries are used to implement these alternatives and compare the memory footprint, communication pattern and energy consumption.Exploitation of wireless sensor networks (WSNs) in ubiquitous computing environments is continuously increasing for gathering data. Contemporary distributed software systems on WSNs for pragmatic business applications have become extremely adaptive, dynamic, heterogeneous and large scaled. Management of such system is not trivial to fulfil these features, leading to more and more complex management and configuration. Along with encompassing state of art and novel techniques for such diversely dynamic system, in this thesis two alternative techniques namely “task initiation by command” and “run-time task deployment and processing” are compared, for such system’s setup and configuration. Both techniques have their own pros and cons which makes them suitable according to the requirements and contextual situations. A lot of effort has been put to make WSNs more and more efficient in terms of computations and power consumption. Hence comparative analysis of both techniques used in this report to setup and configure WSN can be a benchmark to lead towards most appropriate solution to compensate the need of efficient energy and resource consumption.Both alternative schemes are implemented to setup WSN on Sun Microsystems sunSPOT (Small Programmable Object Technology) sensor nodes which are embedded microcontrollers and programmed them in java (j2me). It performs radio communication between wireless sensors and host via sink node also called base station, along with over the air run-time management of sensors. SunSPOTs built in libraries and KSN libraries are used to implement these alternatives and compare the memory footprint, communication pattern and energy consumption.

Page generated in 0.0494 seconds