• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 34
  • 24
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 12
  • 2
  • 1
  • Tagged with
  • 265
  • 265
  • 30
  • 26
  • 26
  • 25
  • 24
  • 23
  • 22
  • 21
  • 21
  • 20
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Reactions and Separations in Tunable Solvents

Thomas, Colin A. 20 October 2006 (has links)
The work in this thesis couples reactions with separations through the use of switchable and tunable solvents. Tunable solvents are mixed solvents which can be easily altered to afford conditions optimal for reaction or separation. Switchable solvents are solvents that can be switched when desired to alter their properties affording conditions suitable for separation. Other studies are of the reaction of CO2 with the amidine base DBU, and an NMR study of solvent-to-solute nuclear Overhauser effects. These examples constitute a marriage of reaction environment with separation environment, significantly, to the benefit of both.
232

The effect of pore dimension of zeolites on the separation of gas mixtures

Jee, Sang Eun 06 April 2010 (has links)
We examined the effect of the pore dimension of zeolites on the separation of gas mixtures using atomistic simulation methods. We studied two categories of the zeolites with small pores: pore modified silicalite for H₂/CH₄separation and small pore silica zeolites for CO₂/CH₄separation. The effect of pore modification of silicalite on the H₂/CH₄separation was examined. Under some degrees of surface modification, the CH₄flux was reduced much more than the H₂flux, resulting in high ideal selectivities. The use of small pore zeolites for CO₂/CH₄separations was studied. In DDR, we showed that CO₂diffusion rates are only weakly affected by the presence of CH₄, even though the latter molecules diffuse very slowly. Consequently, therefore, the permeance of CO₂in the equimolar mixtures is similar to the permeance for pure CO₂, while the CH₄permeance in the mixture is greatly reduced relatively to the pure component permeance. The calculated CO₂/CH₄separation selectivities are higher than 100 for a wide range of feed pressure, indicating excellent separation capabilities of DDR based membranes. Inspired by the observation in DDR we also examined the separation capabilities of 10 additional pure silica small pore zeolites for CO₂/CH₄separations. From these considerations, we predict that SAS, MTF and RWR will exhibit high separation selectivities because of their very high adsorption selectivities for CO₂over CH₄. CHA and IHW, which have similar pore structures to DDR, showed comparable separation selectivities to DDR because of large differences in the diffusion rates of CO₂and CH₄.
233

The rheology and phase separation kinetics of mixed-matrix membrane dopes

Olanrewaju, Kayode Olaseni 18 January 2011 (has links)
Mixed-matrix hollow fiber membranes are being developed to offer more efficient gas separations applications than what the current technologies allow. Mixed-matrix membranes (MMMs) are membranes in which molecular sieves incorporated in a polymer matrix do separation between gas mixtures based on the molecular size difference and/or adsorption properties of the component gases vis-à-vis the porous structure and the nature of adsorption sites in the molecular sieve. The development of MMMs to deliver on its promises has however been slow. The major challenges encountered in the efficient development of MMMs are associated with some of the paradigm shifts involved in their processing. For instance, mixed-matrix hollow fiber membranes are prepared by a dry-wet jet spinning method. For an efficient large scale processing of hollow fibers the rheology and kinetics of phase separation of the MMM dopes are important control variables in the process design. Therefore, this research thesis aims to study the rheology and phase separation kinetics of mixed-matrix membrane dopes. In research efforts to develop predictive models for the shear rheology of suspensions of zeolite particles in polymer solutions it was found that MFI zeolite suspensions have relative viscosities that dramatically exceed the Krieger-Dougherty predictions for hard sphere suspensions. Our investigations show that the major origin of this discrepancy is the selective absorption of solvent molecules from the suspending polymer solution into the zeolite pores. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are greatly increased. A predictive model for the viscosity of porous zeolite suspensions incorporating a solvent absorption parameter, α, into the Krieger-Dougherty model was developed. We experimentally determined the solvent absorption parameter and our results are in good agreement with the theoretical pore volume of MFI particles. In addition, fundamental studies were conducted with spherical nonporous silica suspensions to elucidate the role of colloidal and hydrodynamic forces on the rheology of mixed-matrix membrane dopes. Also in this thesis, details of a novel microfluidic device that enables measurements of the phase separation kinetics via video-microscopy are presented. Our device provides a well-defined sample geometry and controlled atmosphere for in situ tracking of the phase separation process. We have used this technique to quantify the phase separation kinetics (PSK) of polymer solutions and MMM dopes upon contact with an array of relevant nonsolvent. For the polymer solution, we found that PSK is governed by the micro-rheological and thermodynamic properties of the polymer solution and nonsolvent. For the MMM dopes, we found that the PSK is increased by increased particles surface area as a result of surface diffusion enhancement. In addition, it was found that the dispersed particles alter the thermodynamic quality of the dope based on the hydrophilic and porous nature of suspended particles.
234

Carbon molecular sieve membranes for natural gas separations

Kiyono, Mayumi 06 October 2010 (has links)
A new innovative polymer pyrolysis method was proposed for creation of attractive carbon molecular sieve (CMS) membranes. Oxygen exposure at ppm levels during pyrolysis was hypothesized and demonstrated to make slit-like CMS structures more selective and less permeable, which I contrary to ones expectation. Indeed prior to this work, any exposure to oxygen was expected to result in removal of carbon mass and increase in permeability. The results of this study indicated that the separation performance and CMS structure may be optimized for various gas separations by careful tuning of the oxygen level. This finding represents a breakthrough in the field of CMS membranes. Simple replacement of pyrolysis atmospheres from vacuum to inert can enable scale-up. The deviation in CMS membrane performance was significantly reduced once oxygen levels were carefully monitored and controlled. The method was shown to be effective and repeatable not only with dense films but also with asymmetric hollow fiber membranes. As a result, this work led the development of the "inert" pyrolysis method which has overcome the challenges faced with previously studied pyrolysis method to prepare attractive CMS membranes. The effect of oxygen exposure during inert pyrolysis was evaluated by a series of well-controlled experiments using homogeneous CMS dense films. Results indicated that the oxygen "doping" process on selective pores is likely governed by equilibrium limited reaction rather than (i) an external or (ii) internal transport or (iii) kinetically limited reaction. This significant finding was validated with two polyimide precursors: synthesized 6FDA/BPDA-DAM and commercial Matrimid®, which implies a possibility of the "inert" pyrolysis method application extending towards various precursors. The investigation was further extended to prepare CMS fibers. Despite the challenge of two different morphologies between homogeneous films and asymmetric hollow fibers, the "inert" pyrolysis method was successfully adapted and shown that separation performance can be tuned by changing oxygen level in inert pyrolysis atmosphere. Moreover, resulting CMS fibers were shown to be industrially viable. Under the operating condition of ~80 atm high pressure 50/50 CO2/CH4 mixed gas feed, the high separation performance of CMS fibers was shown to be maintained. In addition, elevated permeate pressures of ~20 atm did effect the theoretically predicted separation factor. While high humidity exposures (80%RH) resulted in reduced permeance, high selectivity was sustained in the fibers. Recommendations to overcome such negative effects as well as future investigations to help CMS membranes to be commercialized are provided.
235

Advanced pressure swing adsorption system with fiber sorbents for hydrogen recovery

Bessho, Naoki 29 October 2010 (has links)
A new concept of a "fiber sorbent" has been investigated. The fiber sorbent is produced as a pseudo-monolithic material comprising polymer (cellulose acetate, CA) and zeolite (NaY) by applying hollow fiber spinning technology. Phase separation of the polymer solution provides an appropriately porous structure throughout the fiber matrix. In addition, the zeolite crystals are homogeneously dispersed in the polymer matrix with high loading. The zeolite is the main contributor to sorption capacity of the fiber sorbent. Mass transfer processes in the fiber sorbent module are analyzed for hydrogen recovery and compared with results for an equivalent size packed bed with identical diameter and length. The model indicates advantageous cases for application of fiber sorbent module over packed bed technology that allows system downsizing and energy saving by changing the outer and bore diameters to maintain or even reduce the pressure drop. The CA-NaY fiber sorbent was spun successfully with highly porous structure and high CO2 sorption capacity. The fiber sorbent enables the shell-side void space for thermal moderation to heat of adsorption, while this cannot be applied to the packed bed. The poly(vinyl alcohol) coated CA-NaY demonstrated the thermal moderation with paraffin wax, which was carefully selected and melt at slightly above operating temperature, in the shell-side in a rapidly cycled pressure swing adsorption. So this new approach is attractive for some hydrogen recovery applications as an alternative to traditional zeolite pellets.
236

Mixed matrix membranes for mixture gas separation of butane isomers

Esekhile, Omoyemen Edoamen 14 November 2011 (has links)
The goal of this project was to understand and model the performance of hybrid inorganic-organic membranes under realistic operating conditions for hydrocarbon gas/vapor separation, using butane isomers as the model vapors and a hybrid membrane of 6FDA-DAM-5A as an advanced separation system. To achieve the set goal, three objectives were laid out. The first objective was to determine the factors affecting separation performance in dense neat polymer. One main concern was plasticization. High temperature annealing has been reported as an effect means of suppressing plasticization. A study on the effect of annealing temperature was performed by analyzing data acquired via sorption and permeation measurements. Based on the findings from this study, a suitable annealing temperature was determined. Another factor studied was the effect of operating temperature. In deciding a suitable operating temperature, factors such as its possible effect on plasticization as well as reducing heating/cooling cost in industrial application were considered. Based on the knowledge that industrial applications of this membrane would involve mixture separation, the second objective was to understand and model the complexity of a mixed gas system. This was investigated via permeation measurements using three feed compositions. An interesting transport behavior was observed in the mixed gas system, which to the best of our knowledge, has not been observed in other mixed gas systems involving smaller penetrants. This mixed gas transport behavior presented a challenge in predictability using well-established transport models. Two hypotheses were made to explain the observed transport behavior, which led to the development of a new model termed the HHF model and the introduction of a fitting parameter termed the CAUFFV fit. Both the HHF model and CAUFFV fit showed better agreement with experimental data than the well-established mixed gas transport model. The final objective was to explore the use of mixed matrix membranes as a means of improving the separation performance of this system. A major challenge with the fabrication of good mixed matrix membranes was the adhesion of the zeolite particle with the polymer. This was addressed via sieve surface modification through a Grignard treatment process. Although a Grignard treatment procedure existed, there was a challenge of reproducibility of the treatment. This challenge was addressed by exploring the relationship between the sieves and the solvent used in the treatment, and taking advantage of this relationship in the Grignard treatment process. This study helped identify a suitable solvent, which allowed for successful and reproducible treatment of commercial LTA sieves; however, treatment of lab-made sieves continues to prove challenging. Based on improved understanding of the Grignard treatment reaction mechanism, modifications were made to the existing Grignard treatment procedure, resulting in the introduction of a "simplified" Grignard treatment procedure. The new procedure requires less control over the reaction process, thus making it more attractive for industrial application. Permeation measurements were made using mixed matrix membranes in both single and mixed gas systems. Selectivity enhancements were observed under both single and mixed gas systems using sieve loadings of 25 and 30wt%. The Maxwell model was used to make predictions of mixed matrix membrane performance. Although the experimental results were not in exact agreement with Maxwell predictions, the observed selectivity enhancement was very encouraging and shows potential for future application. Recommendations were made for future study of this system.
237

Identification of metal-organic framework materials for adsorptive separation of the rare gases: applicability of IAST and effects of inaccessible regions

Van Heest, Timothy Milner 06 April 2012 (has links)
A collection of >3000 MOFs with experimentally confirmed structures were screened for performance in three binary separations: Ar/Kr, Kr/Xe, and Xe/Rn. 70 materials were selected for further analysis, and calculations were performed to account for inaccessible regions. Single component GCMC calculations were performed to parameterize IAST calculations on these 70 materials, and the curve fitting problem in IAST was discussed. IAST calculations were confirmed with extensive binary GCMC calculations. For each binary separation, materials were identified with predicted performance that surpasses the state of the art. "Reverse selective" materials, for which a smaller gas species is preferably adsorbed over a larger species, were explained on the basis of surface fractal geometry, computed via a corrected surface area calculation. The effect of temperature on separation performance was also examined.
238

Properties of inorganically surface-modified zeolites and zeolite/ polyimide nanocomposite membranes

Lydon, Megan Elizabeth 20 September 2013 (has links)
Mixed matrix membranes (MMMs) consisting of a polymer bulk phase and an inorganic dispersed phase have the potential to provide a more selective membrane because they incorporate the selectivity of a zeolite dispersed phase while maintaining the ease of use of a polymer membrane. A critical problem in MMM applications is control over the polymer-zeolite interface adhesion during fabrication which can detrimentally impact membrane performance. In this work, MgOxHy (1≤x≤2, 0≤y≤2) nanostructures have been grown on pure-silica MFI and aluminosilicate LTA zeolites through four surface deposition techniques: Grignard decomposition reactions, solvothermal and modified solvothermal depositions, and ion-exchange induced surface crystallization. The structural properties of the surface nanostructures produced by each of the four methods were thoroughly characterized for their morphology, crystallinity, porosity, surface area, elemental composition, and these properties were used to predict the method’s suitability for use in composite membranes. The nanostructured zeolites were used in mixed matrix membranes (MMMs) at two MMMs weight loadings. The dispersion, mechanical properties, and CO₂/CH₄ gas separation properties were measured MMMs made with each method of functionalized LTA. All functionalization methods improve adhesion with the polymer observable by microscopy, the dispersion of particles, and the elastic modulus and hardness of the membrane. Gas permeation measurements prove the quality and effectiveness of the Ion Exchange membrane for CO₂/CH₄ separation by its significant increase in selectivity over the pure polymer. Lastly, the interface between the two materials was studied by probing the interfacial polymer mobility using NMR spin-spin relaxation measurements and mechanical mapping of membrane cross sections. It was shown that the nanostructures have both steric and chemical interactions with the polymer. Mapping of the elastic modulus indicated that functionalization methods that resulted in poorer zeolite coverage also disrupted the mechanical properties of the membrane at the interface of the materials. The investigations in this thesis provide detailed structure-property relationships of surface-modified molecular sieves and nanocomposite membranes fabricated using these materials, allowing a rational approach to the design of such materials and membranes.
239

Nanoporous layered oxide materials and membranes for gas separations

Kim, Wun-Gwi 02 April 2013 (has links)
The overall focus of this thesis is on the development and understanding of nanoporous layered silicates and membranes, particularly for potential applications in gas separations. Nanoporous layered materials are a rapidly growing area of interest, and include materials such as layered zeolites, porous layered oxides, layered aluminophosphates, and porous graphenes. They possess unique transport properties that may be advantageous for membrane and thin film applications. These materials also have very different chemistry from 3-D porous materials due to the existence of a large, chemically active, external surface area. This feature also necessitates the development of innovative strategies to process these materials into membranes and thin films with high performance.
240

Origine des ségrégations leucocrates et des biotitites dans une intrusion felsique-mafique syntectonique : exemple de la région de Baie-Comeau (Tadoussac) /

Fackir, Sanaâ, January 2005 (has links)
Thèse (M.Sc.T.) -- Université du Québec à Chicoutimi, 2005. / Bibliogr.: f. 124-134. Document électronique également accessible en format PDF. CaQCU

Page generated in 0.1312 seconds