• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ASIC implemented MicroBlaze-based Coprocessor for Data Stream Management Systems

LINKNATH SURYA BALASUBRAMANIAN (8781929) 04 May 2020 (has links)
The drastic increase in Internet usage demands the need for processing data in real time with higher efficiency than ever before. Symbiote Coprocessor Unit (SCU), developed by Dr. Pranav Vaidya, is a hardware accelerator which has potential of providing data processing speedup of up to 150x compared with traditional data stream processors. However, SCU implementation is very complex, fixed, and uses an outdated host interface, which limits future improvement. Mr. Tareq S. Alqaisi, an MSECE graduate from IUPUI worked on curbing these limitations. In his architecture, he used a Xilinx MicroBlaze microcontroller to reduce the complexity of SCU along with few other modifications. The objective of this study is to make SCU suitable for mass production while reducing its power consumption and delay. To accomplish this, the execution unit of SCU has been implemented in application specific integrated circuit and modules such as ACG/OCG, sequential comparator, and D-word multiplier/divider are integrated into the design. Furthermore, techniques such as operand isolation, buffer insertion, cell swapping, and cell resizing are also integrated into the system. As a result, the new design attains 67.9435 µW<p></p> of dynamic power as compared to 74.0012 µW<p></p> before power optimization along with a small increase in static power, 39.47 ns of clock period as opposed to 52.26 ns before time optimization.
2

ASIC implemented MicroBlaze-based Coprocessor for Data Stream Management Systems

Balasubramanian, Linknath Surya 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The drastic increase in Internet usage demands the need for processing data in real time with higher efficiency than ever before. Symbiote Coprocessor Unit (SCU), developed by Dr. Pranav Vaidya, is a hardware accelerator which has potential of providing data processing speedup of up to 150x compared with traditional data stream processors. However, SCU implementation is very complex, fixed, and uses an outdated host interface, which limits future improvement. Mr. Tareq S. Alqaisi, an MSECE graduate from IUPUI worked on curbing these limitations. In his architecture, he used a Xilinx MicroBlaze microcontroller to reduce the complexity of SCU along with few other modifications. The objective of this study is to make SCU suitable for mass production while reducing its power consumption and delay. To accomplish this, the execution unit of SCU has been implemented in application specific integrated circuit and modules such as ACG/OCG, sequential comparator, and D-word multiplier/divider are integrated into the design. Furthermore, techniques such as operand isolation, buffer insertion, cell swapping, and cell resizing are also integrated into the system. As a result, the new design attains 67.9435 µW of dynamic power as compared to 74.0012 µW before power optimization along with a small increase in static power, 39.47 ns of clock period as opposed to 52.26 ns before time optimization.

Page generated in 0.105 seconds