1 |
SIMULATED PERFORMANCE OF SERIAL CONCATENATED LDPC CODESPanagos, Adam G. 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / With the discovery of Turbo Codes in 1993, interest in developing error control coding schemes that approach channel capacity has intensified. Some of this interest has been focused on lowdensity parity-check (LDPC) codes due to their high performance characteristics and reasonable decoding complexity. A great deal of literature has focused on performance of regular and irregular LDPC codes of various rates and on a variety of channels. This paper presents the simulated performance results of a serial concatenated LDPC coding system on an AWGN channel. Performance and complexity comparisons between this serial LDPC system and typical LDPC systems are made.
|
2 |
Implementation of Parallel and Serial Concatenated Convolutional CodesWu, Yufei 27 April 2000 (has links)
Parallel concatenated convolutional codes (PCCCs), called "turbo codes" by their discoverers, have been shown to perform close to the Shannon bound at bit error rates (BERs) between 1e-4 and 1e-6. Serial concatenated convolutional codes (SCCCs), which perform better than PCCCs at BERs lower than 1e-6, were developed borrowing the same principles as PCCCs, including code concatenation, pseudorandom interleaving and iterative decoding.
The first part of this dissertation introduces the fundamentals of concatenated convolutional codes. The theoretical and simulated BER performance of PCCC and SCCC are discussed. Encoding and decoding structures are explained, with emphasis on the Log-MAP decoding algorithm and the general soft-input soft-output (SISO) decoding module. Sliding window techniques, which can be employed to reduce memory requirements, are also briefly discussed.
The second part of this dissertation presents four major contributions to the field of concatenated convolutional coding developed through this research. First, the effects of quantization and fixed point arithmetic on the decoding performance are studied. Analytic bounds and modular renormalization techniques are developed to improve the efficiency of SISO module implementation without compromising the performance. Second, a new stopping criterion, SDR, is discovered. It is found to perform well with lowest cost when evaluating its complexity and performance in comparison with existing criteria. Third, a new type-II code combining automatic repeat request (ARQ) technique is introduced which makes use of the related PCCC and SCCC. Fourth, a new code-assisted synchronization technique is presented, which uses a list approach to leverage the simplicity of the correlation technique and the soft information of the decoder. In particular, the variant that uses SDR criterion achieves superb performance with low complexity.
Finally, the third part of this dissertation discusses the FPGA-based implementation of the turbo decoder, which is the fruit of cooperation with fellow researchers. / Ph. D.
|
3 |
Network coding for multihop wireless networks : joint random linear network coding and forward error correction with interleaving for multihop wireless networksSusanto, Misfa January 2015 (has links)
Optimising the throughput performance for wireless networks is one of the challenging tasks in the objectives of communication engineering, since wireless channels are prone to errors due to path losses, random noise, and fading phenomena. The transmission errors will be worse in a multihop scenario due to its accumulative effects. Network Coding (NC) is an elegant technique to improve the throughput performance of a communication network. There is the fact that the bit error rates over one modulation symbol of 16- and higher order- Quadrature Amplitude Modulation (QAM) scheme follow a certain pattern. The Scattered Random Network Coding (SRNC) system was proposed in the literature to exploit the error pattern of 16-QAM by using bit-scattering to improve the throughput of multihop network to which is being applied the Random Linear Network Coding (RLNC). This thesis aims to improve further the SRNC system by using Forward Error Correction (FEC) code; the proposed system is called Joint RLNC and FEC with interleaving. The first proposed system (System-I) uses Convolutional Code (CC) FEC. The performances analysis of System-I with various CC rates of 1/2, 1/3, 1/4, 1/6, and 1/8 was carried out using the developed simulation tools in MATLAB and compared to two benchmark systems: SRNC system (System-II) and RLNC system (System- III). The second proposed system (System-IV) uses Reed-Solomon (RS) FEC code. Performance evaluation of System IV was carried out and compared to three systems; System-I with 1/2 CC rate, System-II, and System-III. All simulations were carried out over three possible channel environments: 1) AWGN channel, 2) a Rayleigh fading channel, and 3) a Rician fading channel, where both fading channels are in series with the AWGN channel. The simulation results show that the proposed system improves the SRNC system. How much improvement gain can be achieved depends on the FEC type used and the channel environment.
|
4 |
Network Coding for Multihop Wireless Networks: Joint Random Linear Network Coding and Forward Error Correction with Interleaving for Multihop Wireless NetworksSusanto, Misfa January 2015 (has links)
Optimising the throughput performance for wireless networks is one of the
challenging tasks in the objectives of communication engineering, since wireless
channels are prone to errors due to path losses, random noise, and fading
phenomena. The transmission errors will be worse in a multihop scenario due to its
accumulative effects. Network Coding (NC) is an elegant technique to improve the
throughput performance of a communication network. There is the fact that the bit
error rates over one modulation symbol of 16- and higher order- Quadrature
Amplitude Modulation (QAM) scheme follow a certain pattern. The Scattered
Random Network Coding (SRNC) system was proposed in the literature to exploit
the error pattern of 16-QAM by using bit-scattering to improve the throughput of
multihop network to which is being applied the Random Linear Network Coding
(RLNC). This thesis aims to improve further the SRNC system by using Forward
Error Correction (FEC) code; the proposed system is called Joint RLNC and FEC
with interleaving.
The first proposed system (System-I) uses Convolutional Code (CC) FEC. The
performances analysis of System-I with various CC rates of 1/2, 1/3, 1/4, 1/6, and
1/8 was carried out using the developed simulation tools in MATLAB and compared
to two benchmark systems: SRNC system (System-II) and RLNC system (System-
III). The second proposed system (System-IV) uses Reed-Solomon (RS) FEC
code. Performance evaluation of System IV was carried out and compared to three
systems; System-I with 1/2 CC rate, System-II, and System-III. All simulations were
carried out over three possible channel environments: 1) AWGN channel, 2) a
Rayleigh fading channel, and 3) a Rician fading channel, where both fading
channels are in series with the AWGN channel. The simulation results show that
the proposed system improves the SRNC system. How much improvement gain
can be achieved depends on the FEC type used and the channel environment. / Indonesian Government and the University of Bradford
|
Page generated in 0.0913 seconds