• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microwave Devices and Antennas Based on Negative-refractive-index Transmission-line Metamaterials

Antoniades, Marc A. 23 September 2009 (has links)
Several microwave devices and antennas that are based on negative-refractive-index transmission-line (NRI-TL) metamaterials are presented in this thesis, which exhibit superior performance features compared to their conventional counterparts. These are a Wilkinson balun, a 1:4 series power divider, a four-element printed dipole array, a leaky-wave antenna, and an electrically small folded-monopole antenna. The Wilkinson balun employs +90° and −90° NRI-TL metamaterial lines at the output branches of a Wilkinson divider, to achieve a six-fold increase in the measured differential output phase bandwidth compared to that of an analogous balun employing transmission lines, while occupying only 55% of the area. The 1:4 series power divider comprises four non-radiating 0° NRI-TL metamaterial lines, each with a compact length of λ0/8, to provide equal power split to all four output ports. Compared to a conventional series power divider employing one-wavelength long transmission lines, the metamaterial divider provides a 154% increase in the measured through-power bandwidth, while occupying only 54% of the area. The metamaterial series power dividing concept is also applied to a four-element fully-printed dipole array that is designed to radiate at broadside, in order to demonstrate that the array exhibits reduced beam squinting characteristics. It is shown that the metamaterial-fed array has a measured scan-angle bandwidth that is 173% greater than an array that is fed using a conventional low-pass loaded line. The reduced-beam squinting property that NRI-TL metamaterial lines offer is subsequently exploited to create a leaky-wave antenna that radiates a near-fixed beam in the forward +45° direction, with an average measured beam squint of only 0.031°/MHz. This is achieved by operating the antenna in the upper right-handed band where the phase and group velocities are the closest to the speed of light. Finally, an electrically small antenna comprising four 0° NRI-TL metamaterial unit cells is presented which supports a predominantly even-mode current, thus enabling it to be modeled as a multi-arm folded monopole. This significantly increases its radiation resistance, which allows it to be matched to 50 Ω, while maintaining a high measured efficiency of 70%.
2

Microwave Devices and Antennas Based on Negative-refractive-index Transmission-line Metamaterials

Antoniades, Marc A. 23 September 2009 (has links)
Several microwave devices and antennas that are based on negative-refractive-index transmission-line (NRI-TL) metamaterials are presented in this thesis, which exhibit superior performance features compared to their conventional counterparts. These are a Wilkinson balun, a 1:4 series power divider, a four-element printed dipole array, a leaky-wave antenna, and an electrically small folded-monopole antenna. The Wilkinson balun employs +90° and −90° NRI-TL metamaterial lines at the output branches of a Wilkinson divider, to achieve a six-fold increase in the measured differential output phase bandwidth compared to that of an analogous balun employing transmission lines, while occupying only 55% of the area. The 1:4 series power divider comprises four non-radiating 0° NRI-TL metamaterial lines, each with a compact length of λ0/8, to provide equal power split to all four output ports. Compared to a conventional series power divider employing one-wavelength long transmission lines, the metamaterial divider provides a 154% increase in the measured through-power bandwidth, while occupying only 54% of the area. The metamaterial series power dividing concept is also applied to a four-element fully-printed dipole array that is designed to radiate at broadside, in order to demonstrate that the array exhibits reduced beam squinting characteristics. It is shown that the metamaterial-fed array has a measured scan-angle bandwidth that is 173% greater than an array that is fed using a conventional low-pass loaded line. The reduced-beam squinting property that NRI-TL metamaterial lines offer is subsequently exploited to create a leaky-wave antenna that radiates a near-fixed beam in the forward +45° direction, with an average measured beam squint of only 0.031°/MHz. This is achieved by operating the antenna in the upper right-handed band where the phase and group velocities are the closest to the speed of light. Finally, an electrically small antenna comprising four 0° NRI-TL metamaterial unit cells is presented which supports a predominantly even-mode current, thus enabling it to be modeled as a multi-arm folded monopole. This significantly increases its radiation resistance, which allows it to be matched to 50 Ω, while maintaining a high measured efficiency of 70%.
3

Realization of a Low Cost Low Complexity Traveling Wave Antenna

Host, Nicholas K. 15 May 2015 (has links)
No description available.
4

Novel Streamlined Methodology for Designing Microstrip Series-Fed Antenna Arrays with Arbitrary Realizable Patterns

Blanco, Jeffrey L. 10 August 2022 (has links)
No description available.

Page generated in 0.0492 seconds