• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal Server Allocation in Zero-Buffer Tandem Queues

Yarmand, Mohammad H. 04 1900 (has links)
<p>We study the server allocation problem for tandem queues in the absence of intermediate buffer space. Servers are assumed to be homogeneous and non-collaborative. We provide policies to maximize the throughput. We break down our work into four stages. First, we assume that all servers are dedicated. We propose an allocation algorithm that assigns servers to stations based on the mean service times and the current number of servers assigned to each station. The algorithm is proposed for stations with exponentially distributed service times, but where the service rate at each station may be different. We further study the impact on the proposed allocation method of including service time distributions with different coecients of variation. Second, we consider tandem queues with both dedicated and flexible servers. We examine policies to dynamically assign flexible servers. When there is one flexible server and two stations each with a dedicated server, we completely characterize the optimal policy. We use the insights gained from applying the Policy Iteration algorithm on systems with three, four, and five stations to devise heuristics for systems of arbitrary size. Third, we study cases where flexibility is constrained such that flexible servers can only service two adjacent stations. We provide optimal policies for tandem queues with three and four stations and compare them with optimal policies for corresponding non-constrained cases. Fourth, we consider two parallel tandem queues with both dedicated servers and vertical flexible servers - servers that can move between corresponding stations of the two tandem queues. The workload allocations are the same for each line and each vertical flexible server moves only between two corresponding stations. We examine policies for dynamic allocation of these vertical flexible servers. When each tandem queue has two stations, each station possesses a dedicated server, and a vertical flexible server exists for each pair of stations, we specify the optimal policy. For cases with more than two stations, heuristic assignments are proposed. We also analyze the throughput improvement gained from adding flexible servers within a tandem queue or between two parallel tandem queues. Numerical results are used to verify the heuristics provided in each of the stages.</p> / Doctor of Philosophy (PhD)
2

Biomimetic and autonomic server ensemble orchestration

Nakrani, Sunil January 2005 (has links)
This thesis addresses orchestration of servers amongst multiple co-hosted internet services such as e-Banking, e-Auction and e-Retail in hosting centres. The hosting paradigm entails levying fees for hosting third party internet services on servers at guaranteed levels of service performance. The orchestration of server ensemble in hosting centres is considered in the context of maximising the hosting centre's revenue over a lengthy time horizon. The inspiration for the server orchestration approach proposed in this thesis is drawn from nature and generally classed as swarm intelligence, specifically, sophisticated collective behaviour of social insects borne out of primitive interactions amongst members of the group to solve problems beyond the capability of individual members. Consequently, the approach is self-organising, adaptive and robust. A new scheme for server ensemble orchestration is introduced in this thesis. This scheme exploits the many similarities between server orchestration in an internet hosting centre and forager allocation in a honeybee (Apis mellifera) colony. The scheme mimics the way a honeybee colony distributes foragers amongst flower patches to maximise nectar influx, to orchestrate servers amongst hosted internet services to maximise revenue. The scheme is extended by further exploiting inherent feedback loops within the colony to introduce self-tuning and energy-aware server ensemble orchestration. In order to evaluate the new server ensemble orchestration scheme, a collection of server ensemble orchestration methods is developed, including a classical technique that relies on past history to make time varying orchestration decisions and two theoretical techniques that omnisciently make optimal time varying orchestration decisions or an optimal static orchestration decision based on complete knowledge of the future. The efficacy of the new biomimetic scheme is assessed in terms of adaptiveness and versatility. The performance study uses representative classes of internet traffic stream behaviour, service user's behaviour, demand intensity, multiple services co-hosting as well as differentiated hosting fee schedule. The biomimetic orchestration scheme is compared with the classical and the theoretical optimal orchestration techniques in terms of revenue stream. This study reveals that the new server ensemble orchestration approach is adaptive in a widely varying external internet environments. The study also highlights the versatility of the biomimetic approach over the classical technique. The self-tuning scheme improves on the original performance. The energy-aware scheme is able to conserve significant energy with minimal revenue performance degradation. The simulation results also indicate that the new scheme is competitive or better than classical and static methods.

Page generated in 0.2982 seconds