• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MicroRNA-146a and RBM4 Form a Negative Feed-Forward Loop That Disrupts Cytokine mRNA Translation Following TLR4 Responses in Human THP-1 Monocytes

Brudecki, Laura, Ferguson, Donald A., McCall, Charles E., Elgazzar, Mohamed 01 September 2013 (has links)
Within hours after its initiation, the severe systemic inflammatory response of sepsis shifts to an adaptive anti-inflammatory state with coincident immunosuppression. This anti-inflammatory phenotype is characterized by diminished proinflammatory cytokine gene expression in response to toll-like receptor (TLR) stimulation with bacterial endotoxin/lipopolysaccharide (LPS), also known as endotoxin tolerance/adaptation. Our and other studies have established that gene-specific reprogramming following TLR4 responses independently represses transcription and translation of proinflammatory genes such as tumor necrosis factor alpha (TNFα). We also previously demonstrated that TNFα and interleukin (IL)-6 mRNA translation is repressed in endotoxin-adapted THP-1 human monocytes by an miRNA-based mechanism involving the argonaute family protein argonaute 2 (Ago2). Here, we further define the molecular nature of reprogramming translation by showing that TLR4-induced microRNA-146 promotes a feed-forward loop that modifies the subcellular localization of the RNA-binding protein RBM4 (RNA-binding motif protein 4) and promotes its interaction with Ago2. This interaction results in the assembly of a translation-repressor complex that disrupts TNFα and IL-6 cytokine synthesis in endotoxin-adapted THP-1 monocytes. This novel molecular path prevents the phosphorylation of RBM4 on serine-309 by p38 MAPK (mitogen-activated protein kinase), which leads to RBM4 accumulation in the cytosol and interaction with Ago2. We further find that microRNA-146a knockdown by antagomirs or protein phosphatase inhibition by okadaic acid increases p38 MAPK phosphorylation and results in RBM4 serine-309 phosphorylation and nuclear relocalization, which disrupts RBM4 and Ago2 interactions and restores TLR4-dependent synthesis of TNFα and IL-6. We conclude that miR-146a has a diverse and critical role in limiting an excessive acute inflammatory reaction.
2

MicroRNA-146a and RBM4 Form a Negative Feed-Forward Loop That Disrupts Cytokine mRNA Translation Following TLR4 Responses in Human THP-1 Monocytes

Brudecki, Laura, Ferguson, Donald A., McCall, Charles E., Elgazzar, Mohamed 01 September 2013 (has links)
Within hours after its initiation, the severe systemic inflammatory response of sepsis shifts to an adaptive anti-inflammatory state with coincident immunosuppression. This anti-inflammatory phenotype is characterized by diminished proinflammatory cytokine gene expression in response to toll-like receptor (TLR) stimulation with bacterial endotoxin/lipopolysaccharide (LPS), also known as endotoxin tolerance/adaptation. Our and other studies have established that gene-specific reprogramming following TLR4 responses independently represses transcription and translation of proinflammatory genes such as tumor necrosis factor alpha (TNFα). We also previously demonstrated that TNFα and interleukin (IL)-6 mRNA translation is repressed in endotoxin-adapted THP-1 human monocytes by an miRNA-based mechanism involving the argonaute family protein argonaute 2 (Ago2). Here, we further define the molecular nature of reprogramming translation by showing that TLR4-induced microRNA-146 promotes a feed-forward loop that modifies the subcellular localization of the RNA-binding protein RBM4 (RNA-binding motif protein 4) and promotes its interaction with Ago2. This interaction results in the assembly of a translation-repressor complex that disrupts TNFα and IL-6 cytokine synthesis in endotoxin-adapted THP-1 monocytes. This novel molecular path prevents the phosphorylation of RBM4 on serine-309 by p38 MAPK (mitogen-activated protein kinase), which leads to RBM4 accumulation in the cytosol and interaction with Ago2. We further find that microRNA-146a knockdown by antagomirs or protein phosphatase inhibition by okadaic acid increases p38 MAPK phosphorylation and results in RBM4 serine-309 phosphorylation and nuclear relocalization, which disrupts RBM4 and Ago2 interactions and restores TLR4-dependent synthesis of TNFα and IL-6. We conclude that miR-146a has a diverse and critical role in limiting an excessive acute inflammatory reaction.
3

Processing Body Formation Limits Proinflammatory Cytokine Synthesis in Endotoxin-Tolerant Monocytes and Murine Septic Macrophages

McClure, Clara, Brudecki, Laura, Yao, Zhi Q., McCall, Charles E., El Gazzar, Mohamed 16 October 2015 (has links)
An anti-inflammatory phenotype with pronounced immunosuppression develops during sepsis, during which time neutrophils and monocytes/macrophages limit their Toll-like receptor 4 responses to bacterial lipopolysaccharide (LPS/endotoxin). We previously reported that during this endotoxin-tolerant state, distinct signaling pathways differentially repress transcription and translation of proinflammatory cytokines such as TNFα and IL-6. Sustained endotoxin tolerance contributes to sepsis mortality. While transcription repression requires chromatin modifications, a translational repressor complex of Argonaute 2 (Ago2) and RNA-binding motif protein 4 (RBM4), which bind the 3′-UTR of TNFα and IL-6 mRNA, limits protein synthesis. Here, we show that Dcp1 supports the assembly of the Ago2 and RBM4 repressor complex into cytoplasmic processing bodies (p-bodies) in endotoxin-tolerant THP-1 human monocytes following stimulation with LPS, resulting in translational repression and limiting protein synthesis. Importantly, this translocation process is reversed by Dcp1 knockdown, which restores TNFα and IL-6 protein levels. We also find this translational repression mechanism in primary macrophages of septic mice. Because p-body formation is a critical step in mRNA translation repression, we conclude that Dcp1 is a major component of the translational repression machinery of endotoxin tolerance and may contribute to sepsis outcome.

Page generated in 0.1456 seconds