• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vehicle Detection in Monochrome Images

Lundagårds, Marcus January 2008 (has links)
<p>The purpose of this master thesis was to study computer vision algorithms for vehicle detection in monochrome images captured by mono camera. The work has mainly been focused on detecting rear-view cars in daylight conditions. Previous work in the literature have been revised and algorithms based on edges, shadows and motion as vehicle cues have been modified, implemented and evaluated. This work presents a combination of a multiscale edge based detection and a shadow based detection as the most promising algorithm, with a positive detection rate of 96.4% on vehicles at a distance of between 5 m to 30 m. For the algorithm to work in a complete system for vehicle detection, future work should be focused on developing a vehicle classifier to reject false detections.</p>
2

Vehicle Detection in Monochrome Images

Lundagårds, Marcus January 2008 (has links)
The purpose of this master thesis was to study computer vision algorithms for vehicle detection in monochrome images captured by mono camera. The work has mainly been focused on detecting rear-view cars in daylight conditions. Previous work in the literature have been revised and algorithms based on edges, shadows and motion as vehicle cues have been modified, implemented and evaluated. This work presents a combination of a multiscale edge based detection and a shadow based detection as the most promising algorithm, with a positive detection rate of 96.4% on vehicles at a distance of between 5 m to 30 m. For the algorithm to work in a complete system for vehicle detection, future work should be focused on developing a vehicle classifier to reject false detections.

Page generated in 0.0841 seconds