Spelling suggestions: "subject:"shakeshaft"" "subject:"shaker""
1 |
FRAGILITY CURVES FOR RESIDENTIAL BUILDINGS IN DEVELOPING COUNTRIES: A CASE STUDY ON NON-ENGINEERED UNREINFORCED MASONRY HOMES IN BANTUL, INDONESIAKhalfan, Miqdad 04 1900 (has links)
<p>Developing countries typically suffer far greater than developed countries as a result of earthquakes. Poor socioeconomic conditions often lead to poorly constructed homes that are vulnerable to damage during earthquakes. Literature review in this study highlights the lack of existing fragility curves for buildings in developing countries. Furthermore, fragility curves derived using empirical data are almost nonexistent due to the scarcity of post-earthquake damage data and insufficient ground motion recordings in developing countries. Therefore, this research proposes a methodology for developing empirical fragility curves using ground motion data in the form of USGS ShakeMaps.</p> <p>The methodology has been applied to a case study consisting of damage data collected in Bantul Regency, Indonesia in the aftermath of the May 2006 Yogyakarta earthquake in Indonesia. Fragility curves for non-engineered single-storey unreinforced masonry (URM) homes have been derived using the damage dataset for three ground motion parameters; peak ground acceleration (PGA), peak ground velocity (PGV), and pseudo-spectral acceleration (PSA). The fragility curves indicate the high seismic vulnerability of non-engineered URM homes in developing countries. There is a probability of 80% that a seismic event with a PGA of only 0.1g will induce significant cracking of the walls and reduction in the load carrying capacity of a URM home, resulting in moderate damage or collapse. Fragility curves as a function of PGA and PSA were found to reasonably represent the damage data; however, fits for several PGV fragility curves could not be obtained. The case study illustrated the extension of ShakeMaps to fragility curves, and the derived fragility curves supplement to the limited collection of empirical fragility curves for developing countries. Finally, a comparison with an existing fragility study highlights the significant influence of the derivation method used on the fragility curves. The diversity in construction techniques and material quality in developing countries, particularly for non-engineered cannot be sufficiently represented through simplified or idealized analytical models. Therefore, the empirical method is considered to be the most suitable method for deriving fragility curves for structures in developing countries.</p> / Master of Applied Science (MASc)
|
Page generated in 0.032 seconds