1 |
Exemplos de derivações simples do anel de polinômios K[x,y]Oliveira, Batista Nunes de January 2006 (has links)
Neste trabalho, apresentamos um algoritmo que nos permite decidir quando derivações de k[x; y], do tipo Shamsuddin (isto é, derivações da forma @x + (a(x)y + b(x)) @y; onde a(x); b(x) 2 k[x] e k é um corpo de característica zero) são simples. Provamos também a simplicidade das derivações do tipo quadráticas ^p = @x + (y2 ¡ p(x))@y; quando k é um corpo algebricamente fechado, onde p(x) 2 k[x] é um polinômio de grau ímpar. / In this work, we present an algorithm that allows us to decide when derivations of k[x; y] of Shamsuddin type (that is, derivations of the form @x + (a(x)y + b(x)) @y; where a(x); b(x) 2 k[x] and k is a field of characteristic zero) are simple. We also prove the simplicity of derivations of quadratic type ^p = @x + (y2 ¡ p(x))@y; where k is an algebraically closed field and p(x) 2 k[x] is a polynomial of odd degree.
|
2 |
Exemplos de derivações simples do anel de polinômios K[x,y]Oliveira, Batista Nunes de January 2006 (has links)
Neste trabalho, apresentamos um algoritmo que nos permite decidir quando derivações de k[x; y], do tipo Shamsuddin (isto é, derivações da forma @x + (a(x)y + b(x)) @y; onde a(x); b(x) 2 k[x] e k é um corpo de característica zero) são simples. Provamos também a simplicidade das derivações do tipo quadráticas ^p = @x + (y2 ¡ p(x))@y; quando k é um corpo algebricamente fechado, onde p(x) 2 k[x] é um polinômio de grau ímpar. / In this work, we present an algorithm that allows us to decide when derivations of k[x; y] of Shamsuddin type (that is, derivations of the form @x + (a(x)y + b(x)) @y; where a(x); b(x) 2 k[x] and k is a field of characteristic zero) are simple. We also prove the simplicity of derivations of quadratic type ^p = @x + (y2 ¡ p(x))@y; where k is an algebraically closed field and p(x) 2 k[x] is a polynomial of odd degree.
|
3 |
Exemplos de derivações simples do anel de polinômios K[x,y]Oliveira, Batista Nunes de January 2006 (has links)
Neste trabalho, apresentamos um algoritmo que nos permite decidir quando derivações de k[x; y], do tipo Shamsuddin (isto é, derivações da forma @x + (a(x)y + b(x)) @y; onde a(x); b(x) 2 k[x] e k é um corpo de característica zero) são simples. Provamos também a simplicidade das derivações do tipo quadráticas ^p = @x + (y2 ¡ p(x))@y; quando k é um corpo algebricamente fechado, onde p(x) 2 k[x] é um polinômio de grau ímpar. / In this work, we present an algorithm that allows us to decide when derivations of k[x; y] of Shamsuddin type (that is, derivations of the form @x + (a(x)y + b(x)) @y; where a(x); b(x) 2 k[x] and k is a field of characteristic zero) are simple. We also prove the simplicity of derivations of quadratic type ^p = @x + (y2 ¡ p(x))@y; where k is an algebraically closed field and p(x) 2 k[x] is a polynomial of odd degree.
|
4 |
Derivações de Shamsuddin simples de K[X1,...,Xn] e ideais maximais cíclicos à esquerda da álgebra de Weyl An(k)Werle, Edson Antônio January 2005 (has links)
Seja K um corpo de característica zero e seja An(K) a n-ésima Álgebra de Weyl sobre K. Neste trabalho, discutimos a existência de ideais maximais à esquerda de An (K) gerados por operadores de ordem 1. Primeiramente, estabelecemos uma relação entre derivações simples de K[X1: ..., Xn] e ideais principais maximais à esquerda de Ân(K). Para n> 2, caracterizamos as derivações de Shamsuddin de K[X1, ..., Xn] que são simples. Depois, mostrámos que se d é uma derivação de Shamsuddin simples de K[X1, ..., Xn], então existe 9 E K[X1, ..., Xn] tal que Ân.(d+g) é um ideal maximal principal à esquerda.
|
5 |
Derivações de Shamsuddin simples de K[X1,...,Xn] e ideais maximais cíclicos à esquerda da álgebra de Weyl An(k)Werle, Edson Antônio January 2005 (has links)
Seja K um corpo de característica zero e seja An(K) a n-ésima Álgebra de Weyl sobre K. Neste trabalho, discutimos a existência de ideais maximais à esquerda de An (K) gerados por operadores de ordem 1. Primeiramente, estabelecemos uma relação entre derivações simples de K[X1: ..., Xn] e ideais principais maximais à esquerda de Ân(K). Para n> 2, caracterizamos as derivações de Shamsuddin de K[X1, ..., Xn] que são simples. Depois, mostrámos que se d é uma derivação de Shamsuddin simples de K[X1, ..., Xn], então existe 9 E K[X1, ..., Xn] tal que Ân.(d+g) é um ideal maximal principal à esquerda.
|
6 |
Derivações de Shamsuddin simples de K[X1,...,Xn] e ideais maximais cíclicos à esquerda da álgebra de Weyl An(k)Werle, Edson Antônio January 2005 (has links)
Seja K um corpo de característica zero e seja An(K) a n-ésima Álgebra de Weyl sobre K. Neste trabalho, discutimos a existência de ideais maximais à esquerda de An (K) gerados por operadores de ordem 1. Primeiramente, estabelecemos uma relação entre derivações simples de K[X1: ..., Xn] e ideais principais maximais à esquerda de Ân(K). Para n> 2, caracterizamos as derivações de Shamsuddin de K[X1, ..., Xn] que são simples. Depois, mostrámos que se d é uma derivação de Shamsuddin simples de K[X1, ..., Xn], então existe 9 E K[X1, ..., Xn] tal que Ân.(d+g) é um ideal maximal principal à esquerda.
|
Page generated in 0.0297 seconds