• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • Tagged with
  • 15
  • 15
  • 12
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ERBB4 KINASE DYNAMICALLY REGULATES HIPPOCAMPAL-PREFRONTAL SYNCHRONY AND HIPPOCAMPAL SHARP WAVE RIPPLES IMPORTANT FOR ATTENTION AND MEMORY

Robinson, Heath Larsson 23 May 2022 (has links)
No description available.
12

Neural Networks with Nonlinear Couplings / Computing with Synchrony

Jahnke, Sven 22 May 2014 (has links)
No description available.
13

The role of cell-type selective synaptic connections in rhythmic neuronal network activity in the hippocampus

Katona, Linda January 2014 (has links)
No description available.
14

Granular retrosplenial cortex layer 2/3 generates high frequency oscillation events coupled with hippocampal sharp wave-ripples and Str. LM high gamma

Arndt, Kaiser C. 11 June 2024 (has links)
Encoding and consolidation of memories are two processes within the hippocampus, and connected cortical networks, that recruit different circuit level dynamics to effectively process and pass information from brain region to brain region. In the hippocampal CA1 pyramidal layer local field potential (LFP), these processes take the form of theta and sharp wave ripples (SPW-Rs) for encoding and consolidation, respectively. As an animal runs through an environment, neurons become active at specific locations in the environment (place cells) increasing their firing rate, functionally representing these specific locations. These firing rate increases are organized within the local theta oscillations and sequential activation of many place cells creates a map of the environment. Once the animal stops moving and begins consummatory behaviors, such as eating, drinking, or grooming, theta activity diminishes, and large irregular activity (LIA) begins to dominate the LFP. Spontaneously, with the LIA, the place cells active during the experience are replayed during SPW-Rs in the same spatial order they were encountered in the environment. Both theta and SPW-R oscillations and their associated neuronal firing are necessary for effective place recognition as well as learning and memory. As such, interruption or termination of SPW-R events results in decreased learning performance over days. During exploration, the associated theta and sequential place cell activity is thought to encode the experience. During quiet restfulness or slow wave sleep (SWS), SPW-R events, that replay experience specific place sequences, are thought to be the signal by which systems consolidation progresses and the hippocampus guides cortical synaptic reorganization. The granular retrosplenial cortex (gRSC) is an associational area that exhibits high frequency oscillations (HFOs) during both hippocampal theta and SPW-Rs, and is potentially a period when the gRSC interprets incoming content from the hippocampus during encoding and systems consolidation. However, the precise laminar organization of synaptic currents supporting HFOs, whether the local gRSC circuitry can support HFOs without patterned input, and the precise coupling of hippocmapla oscillations to gRSC HFOs across brain states remains unknown. We aimed to answer these questions using in vivo, awake electrophysiological recordings in head-fixed mice that were trained to run for water rewards in a 1D virtual environment. We show that gRSC synaptic currents supporting HFOs, across all awake brain states, are exclusively localized to layer 2/3 (L2/3), even when events are detected within layer 5 (L5). Using focal optogenetics, both L2/3 and L5 can generate induced HFOs given a strong enough broad stimulation. Spontaneous gRSC HFOs occurring outside of SPW-Rs are highly comodulated with medial entorhinal cortex (MEC) generated high gamma in hippocampal stratum lacunosum moleculare. gRSC HFOs may serve a necessary role in communication between the hippocampus during SPW-Rs states and between the hippocampus, gRSC, and MEC during theta states to support memory consolidation and memory encoding, respectively. / Doctor of Philosophy / As an animal moves through an environment, individual neurons in the hippocampus, known as place cells, increase and decrease their firing rate as the animal enters and exits specific locations in the environment. Within an environment, multiple neurons become active in different locations, this cooperation of spiking in various locations creates a place map of the environment. Now let's say when the animal moved from one corner of the environment to another, place cells 'A', 'C', 'B', 'E', and 'D' became active in that order. This means, at any given point in the environment, the animal is standing in a venn-diagram-esque overlap of place fields, or locations individual place cells represent. A key question that entranced researchers for many years was how do these neurons know when to be active to not impinge on their neighbor's locations? The answer to this question rested with population electrical activity, known as the local field potential (LFP), that place cell activity is paced to. During active navigation through an environment, place cells activity is coupled to the phase of a slow ~8 hertz (Hz) theta oscillation. Within one theta cycle, or peak to peak, multiple place cells are active, representing the venn diagram of location the animal is in. Importantly, this theta activity and encoding of place cell activity is largely seen during active running or rapid eye movement (REM) sleep. During slow wave sleep (SWS), after an animal has experienced a specific environment and has created a place map, place cells are reactivated in the same order the animal experienced them in. From our previous example, the content of this reactivation would be the place cells 'A', 'C', 'B', 'E', and 'D' which all would be reactivated in that same order. These reactivations or replays occur during highly synchronous and fast LFP oscillations known as sharp wave-ripples (SPW-Rs). SPW-Rs are thought to be a key LFP event that drives memory consolidation and the eventual conversion of short-term memory into long-term memory. However, for consolidation to occur, connected cortical regions need to be able to receive and interpret the information within SPW-Rs. The granular retrosplenial cortex (gRSC) is one proposed region that serves this role. During SPW-Rs the superficial gRSC has been shown to exhibit high frequency oscillations (HFOs), which potentially serve the purpose for interpreting SPW-R content. However, HFOs have been reported during hippocampal theta, suggesting HFOs serve multiple purposes in interregional communication across different states. In this study, we found that naturally occurring gRSC HFOs occur exclusively in layer 2/3 across all awake brain states. Using focal optogenetic excitation we were able to evoke HFOs in both layer 2/3 and 5. Spontaneous gRSC HFOs occurring without SPW-Rs were highly comodulated with medial entorhinal cortex (MEC) generated high gamma in hippocampal stratum lacunosum moleculare. gRSC HFOs may serve a general role in supporting hippocampo-cortical dialogue during SPW-R and theta brain states to support memory consolidation and encoding, respectively.
15

Inhibition, Synapses, and Spike-Timing: Identification and disruption of pyramidal cell-interneuron interactions in SPW-Rs.

Gilbert, Earl Thomas 25 June 2024 (has links)
The neural circuitry responsible for memory consists of complex components with dynamic interactions. In hippocampal area CA1, interactions between excitatory pyramidal cells and inhibitory interneurons shape ensemble activity which encodes sequential experience. An extremely diverse set of inhibitory interneurons, with variation in gene expression, synaptic targeting, state-dependent activity, and connectivity, contribute substantially to circuit activity, such as theta and sharp wave-ripple oscillations. The precise roles of each interneuron group is not well understood, though characterization of their activity reveals mechanisms underlying hippocampal circuit computation. In this dissertation, I aim to identify and disrupt interactions between pyramidal cells and local interneurons to clarify their role in shaping cell assembly activity. We characterized axo-axonic cell activity in sharp wave-ripples, and compared their control of pyramidal cell activity and ripple events to parvalbumin expressing neurons. We identified pyramidal cell-interneuron interactions during ripples, suggesting they serve as lateral inhibitors between cell assemblies. We additionally developed and implemented a novel neural device to explore the role of cannabinoid disruption of hippocampal oscillations and organization of assemblies in vivo in awake animals. We demonstrate that cannabinoid receptor type 1 within CA1 is responsible for suppression of theta and SPW-Rs. We also found that cannabinoid activation within CA1 circuitry, regardless of muted input from CA3, was sufficient to disrupt sharp wave-ripples, likely through interference of pyramidal cell-interneuron interactions. The work in this dissertation provides insight suggesting that interneuron activity must be studied at the spiking timescale to characterize their control over cell assembly activity. / Doctor of Philosophy / Understanding how the brain creates memory remains one of the greatest questions in the field of neuroscience. Coordinated brain activity serves to build communication on large and small scales, across brain regions and within circuits consisting of small groups of neurons. Precise coordination of activity and communication across neurons and regions is thought to build salient experience, which is achieved through the timing of neuron action potentials, or spikes. Neurons receive thousands of inputs that control their spiking activity. "Go and stop" signals from excitatory and inhibitory interneurons act to conduct synchronized activity, which is required for proper circuit function. Importantly, coordinated spiking across large groups of neurons is responsible for observed "brain waves", or oscillations, which reflect organized activity. In CA1 of the hippocampus, there are >20 subtypes of interneurons that all make distinct contributions to memory function, and the roles of these interneurons have not been fully studied within behaving animals. As engineers develop new tools, new methods become available to study and classify how unique groups of interneurons play a part in circuit activity. Thus, we sought to characterize the role of axo-axonic cells, a specialized interneuron with strong control over spiking activity, in hippocampal oscillations that are responsible for memory encoding and consolidation. We identified a new role for axo-axonic cells in the regulation of pyramidal cell spiking in sharp wave-ripple oscillations. Additionally, we developed a novel neural device that allowed us to investigate the mechanisms that underlie cannabinoids, molecules found in Cannabis sativa, and memory dysfunction. We leveraged the multifunctionality of our T-DOpE probe to focally deliver synthetic cannabinoid into the hippocampus in combination with optical control of circuits, with simultaneous recording of activity. We found that cannabinoids acting within CA1 sufficiently disrupt hippocampal oscillations, likely through hindering pyramidal cell-interneuron interactions. Together, these findings suggest that the spatial and temporal resolution required to study diverse roles of interneurons is high, and experiments designed to explore interneuron activity should especially emphasize fine time-scales.

Page generated in 0.0642 seconds