• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of the Conservation Reserve Program and landscape composition on the spatial demographics of prairie grouse in northeastern South Dakota /

Runia, Travis J. January 2009 (has links) (PDF)
Thesis (M.S.)--Wildlife and Fisheries Sciences Dept., South Dakota State University, 2009. / Includes bibliographical references (leaves 74-85). Also available via the World Wide Web.
2

Impacts of oil and gas development on sharp-tailed grouse on the Little Missouri National Grasslands, North Dakota /

Williamson, Ryan M. January 2009 (has links) (PDF)
Thesis (M.S.)--Wildlife and Fisheries Sciences Dept., South Dakota State University, 2009. / Includes bibliographical references (leaves 91-100). Also available via the World Wide Web.
3

A Study of the Relationship Between Plains Sharp-Tailed Grouse Nest Site Selection and Survival and Ecological Site Descriptions in the Northern Plains

Klostermeier, Derek Wade January 2019 (has links)
Nest site selection and nesting success of plains sharp-tailed grouse were examined on the Grand River National Grassland in South Dakota during the nesting season from 2009-2012. We used conditional logistic regression to assess vegetation production, ecological site description, and landscape position on nest site selection. Two competing models regarding nest site selection: top model consisted of non-native forbs and native cool-season grasses, second best model included all grass and forb. Nine ESDs were used for nesting; loamy and clayey ecological sites most frequently used and produced the highest standing crop. Most frequent observed nest site State were Annual/Pioneer Perennial and Introduced and Invaded Grass. Top model for nest daily survival rates included litter, second-best model included ESD; second-best model showed negative effect for nests initiated in thin claypan, limy backslope, and sandy ecological sites. Based on daily survival estimate and 23-day incubation period, nests were 59% successful.
4

The Influence of Wind Energy Development on Columbian Sharp-tailed Grouse (Tympanuchus phasianellus columbianus) Breeding Season Ecology in Eastern Idaho

Proett, Matthew C. 01 May 2017 (has links)
The Columbian sharp-tailed grouse (Tympanuchus phasianellus columbianus; CSTG) has experienced range-wide population declines, primarily as a result of habitat loss or degradation, and currently occupies <10% of its historic range. Expansion of wind energy developments across the remaining occupied CSTG range has been identified as a potential threat to the species. To assess the potential influence of wind energy development on CSTG breeding season ecology, I captured and radio-marked 135 female CSTG during 2014-2015 at leks located between 0.1-13.8 km from wind turbines in restored grassland habitats. I subsequently monitored 147 nests and 68 broods and used an information-theoretic model selection approach to assess the potential influence of wind energy distance and density variables, multi-scale habitat features, temporal factors, and precipitation on CSTG nest site selection, daily nest survival, brood success, and chick survival. The best nest site selection model suggested a positive functional response to the amount of restored grassland habitat with >30% forb cover at the nesting core use (60 ha) scale. Daily nest survival was positively associated with visual obstruction readings at the nest and the amount of restored grassland habitat containing >30% forb cover at the core use (60 ha) scale. Nest site selection and daily nest survival were not influenced by proximity to turbines or turbine density at the core use or breeding season home range (1385 ha) scales. Early (14-day) brood success was positively influenced by post-hatch precipitation and late (42-day) brood success was positively influenced by earlier hatch dates. Chick survival to 42 days post hatch was positively influenced by post-hatch precipitation and earlier hatch dates and negatively influenced by increasing densities of wind turbines at the breeding season home range scale. The probability of an individual chick surviving to 42 days decreased by 50% when there were ≥10 turbines within 2.1 km of the nest. In restored grassland habitats, such as Conservation Reserve Program fields, I recommend plantings and management practices that will result in diverse, bunchgrass-dominated nesting habitat with residual grass cover and >30% forb canopy cover during the nesting season. My results suggest that wind turbines occurring within 2.1 km of nesting habitats (i.e., 4.8 km of occupied leks) may negatively affect CSTG recruitment.

Page generated in 0.0628 seconds