• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shear Behaviour of Precast/Prestressed Hollow-Core Slabs

Celal, Mahmut Sami 12 January 2012 (has links)
Shear strength of precast/prestressed hollow-core (PHC) slabs subjected to concentrated or line loads, especially near supports, may be critical and usually is the governing criteria in the design. This study presents the second phase of a research program, undergoing at the University of Manitoba, to calibrate the shear equations in the Canadian code for predicting the shear capacity of PHC slabs. This phase includes both experimental and numerical investigations using a finite element analysis (FEA) software package. The length of bearing, void shape and size, level of prestressing and shear span-to-depth ratio were investigated. The experimental results were compared to the predictions of the Canadian, American and European codes. It was concluded that the Canadian code is unduly conservative. However, the special European code for PHC slabs resulted in better and more consistent predictions. The FEA suggested that the adequate prestressing reinforcement ratio to obtain highest shear capacity ranges between 0.7% and 1.1%.
2

Shear Behaviour of Precast/Prestressed Hollow-Core Slabs

Celal, Mahmut Sami 12 January 2012 (has links)
Shear strength of precast/prestressed hollow-core (PHC) slabs subjected to concentrated or line loads, especially near supports, may be critical and usually is the governing criteria in the design. This study presents the second phase of a research program, undergoing at the University of Manitoba, to calibrate the shear equations in the Canadian code for predicting the shear capacity of PHC slabs. This phase includes both experimental and numerical investigations using a finite element analysis (FEA) software package. The length of bearing, void shape and size, level of prestressing and shear span-to-depth ratio were investigated. The experimental results were compared to the predictions of the Canadian, American and European codes. It was concluded that the Canadian code is unduly conservative. However, the special European code for PHC slabs resulted in better and more consistent predictions. The FEA suggested that the adequate prestressing reinforcement ratio to obtain highest shear capacity ranges between 0.7% and 1.1%.

Page generated in 0.0869 seconds