1 |
Advanced Thin Film Electroacoustic Devices / Avancerade Elektroakustiska TunnfilmskomponenterBjurström, Johan January 2007 (has links)
The explosive development of the telecom industry and in particular wireless and mobile communications in recent years has lead to a rapid development of new component and fabrication technologies to continually satisfy the mutually exclusive requirements for better performance and miniaturization on the one hand and low cost on the other. A fundamental element in radio communications is time and frequency control, which in turn is achieved by high performance electro-acoustic components made on piezoelectric single crystalline substrates. The latter, however, reach their practical limits in terms of performance and cost as the frequency of operation reaches the microwave range. Thus, the thin film electro-acoustic technology, which uses thin piezoelectric films instead, has been recently developed to alleviate these deficiencies. This thesis explores and addresses a number of issues related to thin film synthesis on the one hand as well as component design and fabrication on other. Specifically, the growth of highly c-axis textured AlN thin films has been studied and optimized for achieving high device performance. Perhaps, one of the biggest achievements of the work is the development of a unique process for the deposition of AlN films with a mean c-axis tilt, which is of vital importance for the fabrication of resonators operating in contact with liquids, i.e. biochemical sensors. This opens the way for the development of a whole range of sensors and bio-analytical tools. Further, high frequency Lamb wave resonators have been designed, fabricated and evaluated. Performance enhancement of FBAR devices is also addressed, e.g. spurious mode suppression, temperature compensation, etc. It has been demonstrated, that even without temperature compensation, shear mode resonators operating in a liquid still exhibit an excellent performance in terms of Q (200) and coupling (~1.8%) at 1.2 GHz, resulting in a mass resolution better than 2 ng cm-2 in water, which excels that of today’s quartz sensors.
|
Page generated in 0.0982 seconds