1 |
Shear behavior of FRP-UHPC composite beams enhanced by FRP shear key: Experimental study and theoretical analysisZhang, Z., Ashour, Ashraf, Ge, W. 06 November 2024 (has links)
Yes / To investigate the shear behavior of FRP (fiber reinforced polymers)-UHPC (ultra-high performance concrete) composite beams, four-point bending tests were conducted on seven FRP-UHPC specimens and two FRP-NSC (normal strength concrete) specimens, having different width and depth of concrete flange as well as FRP shear key (FSK) spacing. The slip between FRP profiles and concrete flange was controlled by employing FSK and epoxy resin bonded hybrid connection. The failure pattern, load-deflection/strain curves, and sliding response of composite beams were analyzed to study the influence of concrete type, FSK spacing, width and thickness of concrete slab. The results indicate that FRP-UHPC composite beams exhibited shear failure, while FRP-NSC composite beams experienced bending-shear failure. The composite beams demonstrated shear-lag effect, which became more pronounced with the increasing of the concrete slab width. The use of UHPC, reducing FSK spacing, and increasing the size of cross-section of concrete flange can effectively enhance the shear performance and reduce interface sliding. Formulae were developed to predict the shear capacity and deflection, considering shear deformation. The results predicted by the formulae developed match well with the experimental results. / The full text will be available at the end of the publisher's embargo: 11th Nov 2025
|
2 |
Axial compressive and seismic shear performance of post-heated columns repaired with composite materialsYaqub, Muhammad January 2010 (has links)
In the light of extreme events of natural disasters (earthquakes or hurricanes) and accidents (fire or explosion), repairing and strengthening of existing concrete structures has become more common during the last decade due to the increasing knowledge and confidence in the use of composite advanced repairing materials. The past experience from real fires shows that it is exceptional for a concrete building to collapse as a result of fire and most fire-damaged concrete structures can be repaired economically rather than completely replacing or demolishing them. In this connection an experimental study was conducted to investigate the effectiveness of fibre reinforced polymer jackets for axial compressive and seismic shear performance of post-heated columns. This study also investigates the effectiveness of ferrocement laminate for the repairing of post-heated reinforced concrete columns.A total of thirty-five reinforced concrete columns were constructed and then tested after categorising them into three main groups: un-heated, post-heated and post-heated repaired. The post-heated columns were initially damaged by heating (to a uniform temperature of 500°C). The concrete cubes were also heated to various temperatures to develop the relation between compressive strength and ultrasonic pulse velocity. The residual compressive strength of the concrete cubes and reinforced concrete columns were determined by ultrasonic testing. The post-heated columns were subsequently repaired with unidirectional glass or carbon fibre reinforced polymer and ferrocement jackets. The experimental programme was divided into two parts. The columns of experimental part-1 were tested under axial compressive loading. The columns of experimental part-2 with a shear span to depth ratio of 2.5 were tested under constant axial and reversed lateral cyclic loading. The results indicated that the trend of reduction in ultrasonic pulse velocity values and in residual compressive strength of concrete was similar with increasing temperature. The reduction in residual stiffness of both post-heated square and circular columns was greater than the reduction in ultimate load. The circular sections benefited more compared to the square cross-sections with fibre reinforced polymers for improving the performance of post-heated columns in terms of compressive strength and ductility tested under axial compression. GFRP and CFRP jackets performed in an excellent way for increasing the shear capacity, lateral strength, ductility, energy dissipation and slowed the rate of strength and stiffness degradation of fire damaged reinforced concrete square and circular columns tested under combined constant axial and reversed lateral cycle loading. However, the effect of a single layer of glass or carbon fibre reinforced polymer on the axial stiffness of post-heated square and circular columns was negligible. The use of a ferrocement jacket for the repairing of post-heated square and circular columns enhanced the axial stiffness and ultimate load carrying capacity of columns significantly.
|
3 |
Shear performance of poplar LVL beams with a hole in bending-shear spansWang, A., Zhang, Z., Ashour, Ashraf, Liu, Y., Wang, C. 05 November 2024 (has links)
Yes / To investigate the shear performance of poplar laminated veneer lumber (LVL) beams with holes in bending-shear spans, six specimens were designed and tested by four-point bending tests. Among these, five specimens were provided with a single hole of varying diameter-to-height ratio in the bending-shear span and two of these beams were also reinforced with circumferential carbon fiber reinforced polymer (CFRP) wrap layers. Furthermore, a 3D finite element models for poplar LVL beams with a hole were established, based on the extended finite element method (XFEM) using ABAQUS software. The validated model was utilized to conduct parametric studies on the diameter-to-height ratio, the hole shape, and the vertical eccentricity ratio. A simplified theoretical analysis for predicting the cracking and ultimate loads for LVL beam with a hole was also proposed. The results indicated that beams without a hole failed due to bending, characterized by mid-span tension cracks, whereas beams with a hole exhibited shear failure along the beam's grain direction due to stress concentration around the holes. The maximum normal tensile strain perpendicular to grain around the hole had an angle of 45° or 225° relative to the beam's longitudinal axis, consistent with the crack initiation angle. As the diameter-to-height ratio increased, the cracking and ultimate loads of beams with a hole decreased, indicating more brittle failure characteristics. The circular hole beam showed significant improvements in cracking and ultimate loads compared with the square hole beam with side length equal to the diameter of the circular hole. When the hole center's vertical eccentricity was in the compression zone, an increase in vertical eccentricity led to enhancements in both the cracking load and ultimate loads. Wrapping the beam with CFRP sheet around the hole effectively mitigated crack propagation, enhancing the load-bearing capacity of beams. The simplified formulas provided accurate prediction for the ultimate load, but highly overestimated the cracking and ultimate loads for poplar LVL beams with a hole. The research findings can be provided as a technical support for the design and application of LVL beams with holes. / The full text will be available at the end of the publisher's embargo: 13th Nov 2025
|
Page generated in 0.0698 seconds