• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 13
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical studies of radio-frequency sheath

Xiang, Nong, 1964- 03 August 2011 (has links)
Not available / text
2

The effects of moving electron density fluctuations on time domain reflectometry in plasmas /

Scherner, Michael J. January 1991 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 101-102). Also available via the Internet.
3

Theoretical studies of radio-frequency sheath

Xiang, Nong, Drummond, William E., Waelbroeck, F. January 2004 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisors: Bill Drummond and Frank Waelbroeck. Vita. Includes bibliographical references. Also available from UMI.
4

The effects of moving electron density fluctuations on time domain reflectometry in plasmas

Scherner, Michael J. 17 March 2010 (has links)
The effects of time-dependent electron density fluctuations on a synthesized time domain reflectometry response of a one-dimensional cold plasma sheath are considered. Numerical solutions of the Helmholtz wave equation, which describes the electric field of a normally incident plane wave in a specified static electron density profile, are used. Included in this work is a study of the effects of Doppler shifts resulting from moving density fluctuations in the electron density profile of the sheath. / Master of Science
5

Extractability Profiling and Antioxidant Activity of Flavonoids in Sorghum Grain and Non-grain Materials

Njongmeta, Nenge Lynda A. 2009 May 1900 (has links)
Grains, leaves, sheaths, glumes and stalks of sorghum varieties were analyzed for total phenols, condensed tannins, flavan-4-ols, anthocyanins and in vitro antioxidant activity. Black sorghum bran was used to evaluate the effectiveness of organic acids and enzymes on extractability of phenols. Flavonoid profiles of grains and non-grain tissues were determined and characterized using HPLC-PDA and HPLC-ESI-MSn. The presence of a pigmented testa and spreader genes (B1B2S) is a predictor for polymeric flavonoids (tannins) but not for simple phenols such as flavan-4-ols, 3-deoxyanthocyanins, flavones and flavanones. Simple flavonoids increased antioxidant capacity of sorghum, and were present in all sorghum except for the white pericarp sorghums that did not have flavanones. The "red turning into black" gene increased phenols in Type I sorghum. The leaves, sheath and glumes of sorghum had higher levels of phenols (78-600 times more), with in vitro antioxidant properties than commonly seen in grains. Pigmentation of plant components increased levels of 3- deoxyanthocyanins but not flavones nor flavanones. The leaves of biomass sorghum, Collier variety, had 3.4 times more 3-deoxyanthocyanins than the leaves of Tx430 Black x Sumac which had the highest levels (1810 ?g/g) of 3- deoxyanthocyanins among the leaves. The use of 1% HCl/ethanol provides a possible food grade substitute solvent for 1%HCl/methanol in the extraction of phenolic compounds from sorghum. All enzymes evaluated broke down bran particles forming a gel-like material which had increased phenols and antioxidant activities but not 3- deoxyanthocyanins as revealed by HPLC analysis. Microscopy examination showed the gel matrix rich in fiber and can possibly be used for nutraceutical applications. Careful understanding of enzyme activities is necessary for effective extraction of 3-deoxyanthocyanins from sorghum. Sorghum leaves, sheaths and glumes are excellent sources of bioactive compounds, up to 600 times more than the grains of some varieties. Sorghum with the "red turning to black genes" is a potential source of 3- deoxyanthocyanins and flavan-4-ols. With the trend towards sorghum as biomass for ethanol production, plant breeders must select special traits aimed at developing enhanced desired functionality such as antioxidant potential and other healthy attributes with application in food, pharmaceutical/nutraceutical and cosmetic industries.
6

Determination of surface plasma structures in the kinetic regime.

Neuman, William Albert. January 1988 (has links)
A numerical study is done of a plasma in contact with a cold solid surface that is emitting a neutral gas. Two numerical models have been developed to describe the dominant phenomena of surface plasma structures. The first model entails a steady-state, kinetic treatment of the transport equations in one space dimension and one velocity dimension, to determine self-consistently the distribution functions of the interacting species and the electrostatic potential near the solid surface. The dominant phenomena in this region are the ionization of the neutral gas and the acceleration of the resulting ions by the electrostatic field in a pre-sheath region. Other effects involved are a Debye sheath structure between the solid surface and pre-sheath, and collisional trapping and untrapping of electrons in an electrostatic potential well that is predicted in the pre-sheath region. Results are presented from a nondimensional model with a monatomic returning neutral species and for diatomic molecular hydrogen returning from the surface. For each set of physical parameters chosen, a one parameter family of solutions is obtained. The second numerical model involves a steady-state treatment of the transport equations in a (x,v∥,v⊥) phase space for the interacting species. Included in this model are ionization of the refluxing monatomic neutrals, a self-consistently determined electrostatic potential and a nonlinear Fokker-Planck treatment of ion-ion Coulomb collisions. Both the region near the surface dominated by kinetic effects and the region away from the surface in which Coulomb collisional effects are significant are treated. Results are presented which identify the correct physical solution for the region near the surface from the permitted family found with the kinetic model. Additionally, results are shown which span a temperature range from the high temperature kinetic regime where Coulomb collisional effects are negligible, to the low temperature, highly collisional fluid regime. At low temperatures the collisional model agrees well with standard fluid techniques.
7

Modulation of OPC migration : improving remyelination potential in multiple sclerosis

Peeva, Elitsa Radostinova January 2018 (has links)
In the brain, axons are wrapped by myelin sheaths which ensure fast saltatory conduction of impulses and provide metabolic support. In multiple sclerosis (MS), the myelin sheaths are lost which leaves the axon denuded. This not only results in slower conduction of action potentials, but if prolonged, can also lead to axon death due to the loss of metabolic support. This neurodegeneration is the main cause of permanent disability in multiple sclerosis patients. The axon death and disability which stem from it could be prevented by restoring the myelin wrap before axon damage has occurred. This remyelination process is carried out by oligodendrocyte precursor cells which are present throughout life. To remyelinate, OPCs migrate to the area of damage and differentiate into myelinating oligodendrocytes which ensheathe axons with new myelin. In multiple sclerosis, this process occurs but is insufficient to overcome the damage. Therefore, central to the therapeutic efforts in multiple sclerosis is the aim to improve endogenous remyelination. Enhancing recruitment of oligodendrocyte precursor cells (OPCs) to the areas of damage is a clinically unexplored target. To investigate the therapeutic potential of OPC recruitment modulators, I have looked at 2 different targets involved in migration NDST1/HS and Sema3A/NP1. The first target, heparan sulfate (HS) is a proteoglycan which is important to OPC migration, investigated by Pascale Durbec's group in France. In a demyelinating mouse model, its key synthesising enzyme, NDST1, is upregulated by oligodendroglia in a belt around the lesion to aid OPC recruitment. Loss of NDST1 in oligodendrocytes was found to impair remyelination and reduce OPC migration in mice. In collaboration with them, I investigated the relevance of this molecule in post-mortem MS human tissue. I found that in human as well as mouse, NDST1 was primarily expressed by oligodendroglia. The protein level and the proportion of oligodendroglia expressing NDST1 was increased in MS compared to control indicating NDST1 upregulation as a disease response in human. We also found that low numbers of NDST1+ oligodendroglia correlate with bigger sizes of lesions and chronic lesion types that fail to repair, highlighting its importance in repair. Moreover, high numbers of NDST1+ cells in a patient correlated with increased remyelination potential. This indicates that in human, intra-patient variation in NDST1 level may explain differences in potential for endogenous repair. Secondly, I looked at Sema3A, a chemorepulsive molecule which is upregulated in demyelinated injury rodent models aswell as multiple sclerosis lesions, particularly in OPC-depopulated chronic active lesions. Research has consistently found that the level of Sema3A negatively correlates to remyelination because Sema3A hinders OPC migration. This has highlighted Sema3A as a potential target to improve OPC recruitment in MS however the size and shape of the molecule make it hard to design therapeutics against it. Therefore, I looked at its druggable receptor, Neuropilin 1 (NP1), to see whether inhibition of NP1 had the same positive effect on OPC recruitment and remyelination as lowering the level of Sema3A. NP1 is a tyrosine kinase receptor for both Sema3A and vascular endothelial growth factor (VEGF) and is found in many cell types. To check if NP1 inhibition is beneficial, I assessed remyelination in a mouse where the Sema3A binding site of NP1 has been mutated to prevent Sema3A binding and exerting its effect. This is a proxy for a (currently unavailable) ideal NP1 inhibitor of the Sema3A site only. Contrary to my expectations, OPC recruitment and remyelination in the mutant mice were not improved. However, the NP1 mutation resulted in an altered immune response. To exclude the possibility that no improvement in the OPC recruitment and remyelination of those mice was seen because it was negated by the altered immune response, I explored a cell specific mutant mouse in which NP1 was deleted in oligodendroglia only. In this mutant as well, I did not see improvement of OPC recruitment and remyelination. I therefore propose that Neuropilin 1 is not imperative for Sema3As action in remyelination and is not suitable as a therapeutic target in multiple sclerosis. Loss of the whole NP1, but not loss of the Sema3A site also resulted in biggermyelinated and unmyelinated axons as well as a different myelin thickness post remyelination. This showed that VEGF and the VEGF site on NP1 in oligodendroglia have a previously unknown but important role in determining axon size and myelin thickness which should be further investigated. To further elucidate those results in a simple system, I looked at how Sema3A, NP1-Sema3A inhibitors, VEGF and NP1-VEGF inhibitor affect OPC behaviour. I confirmed Sema3As chemorepulsive effect but also showed that at different concentrations it can improve proliferation and survival of OPCs. Inhibiting the Sema3A site and the VEGF site of NP1 by specific blocking antibodies also affects OPC proliferation and maturation. This suggested that NP1s ligands are involved in more than just OPC migration. In summary, this work supports the relevance of the mouse findings that NDST1 is upregulated in demyelination and important for repair for human illustrating that it might be a suitable therapeutic target to investigate. However, despite the importance of Sema3A in MS models, its only reported receptor, NP1, is not essential for Sema3As action. Therefore, it is an unsuitable therapeutic target. The fact that NP1 is an inappropriate drug target for MS is further demonstrated by the involvement of its ligands in multiple OPC behaviours both in positive and negative aspects.
8

Lipid organisation and dynamics in the myelin membrane sheets

Steshenko, Olena 21 October 2013 (has links)
No description available.
9

A Continuum Kinetic Investigation into the Role of Transport Physics in the Bohm Speed formulation

Krishna Kumar, Vignesh 26 October 2023 (has links)
When plasmas come in contact with the boundaries that confine them, various complex processes occur between the plasma and the materials in the boundary. These processes, called plasma-material interactions (PMI) lead to physical and chemical modifications in the materials and in the plasma. In the case of a tokamak, a magnetic confinement fusion reactor, the interactions between the plasma and the material in the bounding walls can negatively impact the performance and service life of the reactor. Furthermore, PMI are also found in other areas of significant engineering interest, such as plasma-based spacecraft propulsion engines, where interactions affect the transport properties of the plasma and consequently the performance of the engine. Therefore, gaining a fundamental understanding of the various plasma-material interactions is necessary for the development and improvement of these devices. PMI are dictated by the plasma sheath, a layer of net positive charge that forms at the plasma-boundary interface. The sheath regulates the energy and particle fluxes to the boundary, mediating the interactions. Sheaths, however, are only stable and well-developed when the ions enter the sheath with a speed equal to or greater than the `Bohm speed'. The Bohm speed is a landmark result in sheath theory and various mathematical expressions for it have been derived from fluid and kinetic treatment of plasmas. Although these models are widely used, they are only accurate in cases where the thickness of the sheath is negligible when compared to the scale length of the plasma in consideration. These cases are said to satisfy the `asymptotic limit'. To resolve this, a new Bohm speed model that considers the effects of transport terms such as the electron heat flux, thermal force, and temperature isotropization has been recently proposed [Y. Li et al., Physical Review Letters (2022)]. The model is verified using particle-in-cell (PIC) kinetic simulations and is shown to accurately predict the Bohm speed in cases away from the asymptotic limit. This thesis investigates the new model using the continuum kinetic approach on the Gkeyll software framework. The continuum kinetic approach numerically solves the Vlasov-Maxwell equations using the discontinuous Galerkin method and captures the kinetic phenomena of the plasma without needing to track individual particles. Multiple collisional cases ranging from a Knudsen number of 20 to 5000 are considered in a 1X3V simulation domain using the Lenard-Bernstein collisional operator. The results of the continuum kinetic simulations are benchmarked to the PIC simulation results. It is concluded that across a wide range of collisionalities, the continuum kinetic method captures much of the same physics as the PIC method while offering noise-free results. However, there is a discrepancy between the Bohm speed prediction and the simulation results in the continuum kinetic case. This discrepancy is explored and significant error in the collisional integral derived transport terms between the continuum kinetic method and PIC method is found, suggesting that the difference in collisional operator may be the source of the discrepancy. Nevertheless, the sheath profiles developed in the PIC simulations and the continuum kinetic simulations are in reasonable agreement. / Master of Science / Nuclear fusion is a process in which two light atomic nuclei (like hydrogen) fuse to form a heavier nucleus (like helium) and release tremendous amounts of energy. The resultant energy from these reactions powers the sun and has the potential to provide clean energy for our terrestrial needs. Harnessing fusion energy has been one of the biggest scientific and engineering challenges of our time due to various reasons. One of these reasons is the interaction of plasma, which is the fuel for the fusion reaction, and the materials of the walls that bound the plasma. These interactions are called plasma-material interactions (PMI) and can affect the longevity and performance of fusion reactors. The main governing phenomenon behind these interactions is the plasma sheath, a layer of plasma that is formed when the plasma encounters a boundary. For a sheath to form it is also necessary that ions in the plasma possess a speed greater than the so-called `Bohm speed'. While many expressions have been derived for the Bohm speed, these expressions are only valid when there is a clear sheath entrance that divides the bulk plasma and the sheath. This condition is not satisfied in many cases of interest. Instead, a sheath-transition region is found to exist between the bulk plasma and the sheath. A recently proposed Bohm speed model [Y. Li et al., Physical Review Letters (2022)] resolves this. This model is accurate in cases where the sheath-transition region exists and is derived by considering previously overlooked transport physics. In this work, this new model is studied using a different computational approach known as `continuum kinetics' using an open-source solver called Gkeyll. The results of the continuum kinetic simulations are compared to the results used to verify the model.
10

Space-Charge Saturation and Current Limits in Cylindrical Drift Tubes and Planar Sheaths

Stephens, Kenneth Frank 08 1900 (has links)
Space-charge effects play a dominant role in many areas of physics. In high-power microwave devices using high-current, relativistic electron beams, it places a limit on the amount of radiation a device can produce. Because the beam's space-charge can actually reflect a portion of the beam, the ability to accurately predict the amount of current a device can carry is needed. This current value is known as the space-charge limited current. Because of the mathematical difficulties, this limit is typically estimated from a one-dimensional theory. This work presents a two-dimensional theory for calculating an upper-bound for the space-charge limited current of relativistic electron beams propagating in grounded coaxial drift tubes. Applicable to annular beams of arbitrary radius and thickness, the theory includes the effect introduced by a finite-length drift tube of circular cross-section. Using Green's second identity, the need to solve Poisson's equation is transferred to solving a Sturm-Liouville eigenvalue problem, which is easily solved by elementary methods. In general, the resulting eigenvalue, which is required to estimate the limiting current, must be numerically determined. However, analytic expressions can be found for frequently encountered limiting cases. Space-charge effects also produce the fundamental collective behavior found in plasmas, especially in plasma sheaths. A plasma sheath is the transition region between a bulk plasma and an adjacent plasma-facing surface. The sheath controls the loss of particles from the plasma in order to maintain neutrality. Using a fully kinetic theory, the problem of a planar sheath with a single-minimum electric potential profile is investigated. Appropriate for single charge-state ions of arbitrary temperature, the theory includes the emission of warm electrons from the surface as well as a net current through the sheath and is compared to particle-in-cell simulations. Approximate expressions are developed for estimating the sheath potential as well as the transition to space-charge saturation. The case of a space-charge limited sheath is discussed and compared to the familiar Child-Langmuir law.

Page generated in 0.0492 seconds