• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 13
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aplikace metod počítačové fyziky při studiu interakce plazmatu s pevnými látkami / Application of methods of computational physics for the study of plasma-solid interaction

Hromádka, Jakub January 2013 (has links)
Low-temperature plasma and its interaction with immersed solids is studied in this work. The research of the physical processes on this interface is performed by two-dimensional particle computer model. The model uses molecular dynamic method. Mutual forces between particles are computed by Particle- in-Cell method. The main application of the model is in the area of the probe diagnostic of plasma. Simple problems are compared with theory and two dimensional effects are discused. Contribution of particle modeling to plasma research is showed on the problem of interaction of sheaths around cylidrical probes. We deal with question whether we are able to get some information about unevennesses at the surface of solid immersed in plasma by measuring probe characteristics in its surroundings. We also studied the influence of plasma electronegativity on the parameters of sheaths around cylidrical probes. Powered by TCPDF (www.tcpdf.org)
12

Comparing Theory and Experiment for Analyte Transport in the First Vacuum Stage of the Inductively Coupled Plasma Mass Spectrometer

Zachreson, Matthew R 01 July 2015 (has links) (PDF)
The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation Monte Carlo algorithm capable of modeling this transitional flow through the mass spectrometer interface, the transitional flow from disorganized plasma to focused ion beam. Their previous work describes how FENIX simulates the neutral ion flow. While understanding the argon flow is essential to understanding the ICP-MS, the true goal is to improve its analyte detection capabilities. In this work, we develop a model for adding analyte to FENIX and compare it to previously collected experimental data. We also calculate how much ambipolar fields, plasma sheaths, and electron-ion recombination affect the ion beam formation. We find that behind the sampling interface there is no evidence of turbulent mixing. The behavior of the analyte seems to be described simply by convection and diffusion. Also, ambipolar field effects are small and do not significantly affect ion beam formation between the sampler and skimmer cones. We also find that the plasma sheath that forms around the sampling cone does not significantly affect the analyte flow downstream from the skimmer. However, it does thermally insulate the electrons from the sampling cone, which reduces ion-electron recombination. We also develop a model for electron-ion recombination. By comparing it to experimental data, we find that significant amounts of electron-ion recombination occurs just downstream from the sampling interface.
13

FORMATION, DYNAMICS AND CHARACTERIZATION OF SUPPORTED LIPID BILAYERS ON SiO2 NANOPARTICLES

Ahmed, Selver January 2012 (has links)
This work is devoted to understanding the formation of supported lipid bilayers (SLBs) on curved surfaces as a function of lipid properties such as headgroup charge/charge density and alkyl chain length, and nanoparticle properties such as size and surface characteristics. In particular, the formation of SLBs on curved surfaces was studied by varying the size of the underlying substrate SiO2 nanoparticles with size range from 5-100 nm. Curvature-dependent shift in the phase transition behavior of these supported lipid bilayers was observed for the first time. We found that the phase transition temperature, Tm of the SLBs first decreased with decreasing the size of the underlying support, reached a minimum, and then increased when the size of the particles became comparable with the dimensions of the lipid bilayer thickness; the Tm was above that of the multilamellar vesicles (MLVs) of the same lipids. The increase in Tm indicated a stiffening of the supported bilayer, which was confirmed by Raman spectroscopic data. Moreover, Raman data showed better lipid packing and increased lateral order and trans conformation for the SLBs with increasing the curvature of the underlying support and decrease of the gauche kinks for the terminal methyl groups at the center of the bilayer. These results were consistent with a model in which the high free volume and increased outer headgroup spacing of lipids on highly curved surfaces induced interdigitation in the supported lipids. These results also support the symmetric lipid exchange studies of the SLBs as a function of the curvature, which was found to be slower on surfaces with higher curvature. Further, the effect of surface properties on the formation of SLBs was studied by changing the silanol density on the surface of SiO2 via thermal/chemical treatment and monitoring fusion of zwitterionic lipids onto silica (SiO2) nanoparticles. Our findings showed that the formation of SLBs was faster on the surfaces with lower silanol density and concomitantly less bound water compared to surfaces with higher silanol density and more bound water. Since the two SiO2 nanoparticles were similar in other respects, in particular their size and charge (ionization), as determined by zeta potential measurements, differences in electrostatic interactions between the neutral DMPC and SiO2 could not account for the difference. Therefore the slower rate of SLB formation of DMPC onto SiO2 nanoparticles with higher silanol densities and more bound water was attributed to greater hydration repulsion of the more hydrated nanoparticles. Lastly, we have investigated the effect and modulation of the surface charge of vesicles on the formation of SLBs by using different ratios of zwitterionic and cationic DMPC/DMTAP lipids. Through these studies we discovered a procedure by which assemblies of supported lipid bilayer nanoparticles, composed of DMPC/DMTAP (50/50) lipids on SiO2, can be collected and released from bilayer sacks as a function of the phase transition of these lipids. The lipids in these sacks and SLBs could be exchanged by lipids with lower Tm via lipid transfer. / Chemistry

Page generated in 0.0337 seconds