• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of combination treatments on the physico-chemical changes in ripening bananas

Rahman, Russly Abdul January 1992 (has links)
No description available.
2

Extending Shelf Life of Sliced Mushrooms (Agaricus bisporus) by using Vacuum Impregnation and Electron-beam Irradiation

Sevimli, Zeynep 02 October 2013 (has links)
Mushrooms are one of the protein rich foods, however they have a short pro-harvest life (2 to 3 days) compared to most vegetables. The aim of this study was to evaluate whether applying an anti-browning solution using vacuum impregnation and then electron beam irradiation can be used to extend the shelf life of fresh-cut mushrooms (Agaricus bisporus). Solutions made with (a) 2% ascorbic acid + 1% calcium lactate, (b) 2% citric acid + 1% calcium lactate, (c) 1% chitosan + 1% calcium lactate, and (d) 1% calcium lactate were used to impregnate mushroom slices at different vacuum pressures, vacuum pressure times, and atmospheric restoration times. Mushrooms were also irradiated at a dose of 1 kGy using a 1.35 MeV e-beam accelerator and their quality was evaluated in terms of color, texture, and microbial growth during 15 days storage at 4 degrees C. The best vacuum impregnation treatment was the 2% ascorbic acid and 1% calcium lactate solution using a vacuum pressure of 50 mmHg for 5 minutes and an atmospheric restoration time of 5 minutes. The control (not treated) and impregnated samples lost their structure (softening) during storage. The irradiated samples lost their firmness by day 4 of storage. The addition of calcium lactate to the samples during the treatment helped to keep the product’s texture during the 15 days storage time. Color of the mushrooms changed during storage for all the control and impregnated samples and only the irradiated samples showed an acceptable color by the end of day 15. Aerobics and psychrotrophics counts were significantly reduced by irradiation; while yeast and molds population increased by day 9 and were not completely inactivated with a dose of 1 kGy. Sensory panelists preferred the treated samples over the controls. The best treatment was the combination of vacuum impregnation with irradiation according to the consumer studies.
3

Effect of preharvest UV-treatment on shelf life of fruits and vegetables

Obande, Matthew A. January 2010 (has links)
The benefits of low UV dose treatment of horticultural produce – also known as hormetic treatment - have been attested to in numerous studies conducted over the last 15 years. However, commercial growers have not adopted the concept of hormesis. With increasingly stringent controls on the use of fungicides and other chemical agents the time has come to examine how hormetic treatment might be applied in the horticulture sector. The objectives of this work were firstly, to confirm UV-induced hormetic effects applied postharvest for a number of different types of produce, namely, tomatoes, broccoli, strawberries and mangoes. Secondly, to evaluate the use of rollers to ensure full surface treatment of produce, and thirdly to evaluate the possibility of treating produce preharvest. In order to investigate surface UV dose distributions, a polystyrene sphere (Diameter 70 mm) was used to simulate fruits such as tomatoes, apples, peaches etc., that have an approximately spherical form. Biodosimetry based on spores of Bacillus subtilis was employed to experimentally determine UV doses and to compare the results obtained with theoretical predictions. Good agreement was obtained and the modelling approach was extended to other types of produce. This showed the amenability of mechanical rollers to ensure full surface treatment of produce. Postharvest treatment of produce was carried using conventional low intensity UV sources principally emitting at 254 nm and also a commercially available high energy pulsed UV source. Treatment using the conventional UV source was carried out on mechanical rollers within a UV cabinet designed for this work at a fixed distance from the source and at an intensity of 1000 μW/cm2. A 5 minute conventional UV treatment of tomatoes was approximately comparable to fruit given a 3-pulsed treatment using the pulsed source (507 J/pulse of polychromatic light). The colour and texture of both groups of fruit were significantly maintained as compared with controls. The treated tomatoes also showed a significant increase in the ascorbic acid levels during storage. Similarly, a 15 minute conventional UV treatment of broccoli heads was comparable to heads given a 10-pulsed treatment using the pulsed source. Where both treatments gave rise to a statistically significant retention of green colour of treated broccoli. In addition, mangoes given a 10 minute conventional UV treatment were comparable to fruit given a 20-pulsed treatment using the pulsed source with both treatments leading to maintenance of texture as compared to control fruit. This confirmed the UV-hormetic effects. The effects of conventional and pulsed treatments are compared and discussed. Preharvest treatment of tomatoes and strawberries was carried out in commercial glasshouses. Doses of either 3 or 8 kJ/m2 were delivered to the fruits using a treatment device designed for the work, which delivered a combined intensity of 2000 μW/cm2 from two low pressure UV sources. The treated tomatoes showed a delay in development of colour as measured on the vine and after picking. Picked tomatoes were inoculated with P. digitatum and C. gloeosporioides and the results obtained showed a significant inhibition of the development of the fungi in the treated fruit during the storage period. These results suggest that the beneficial response shown by the preharvest treatment is not a localised one but a systematically induced resistance observable throughout the treated plant. This was shown by monitoring tomato fruits on treated plants which themselves where not directly exposed to the UV light. The two doses elicited different responses in the treated strawberries, with the 8 kJ/m2 dose causing the fruit to redden significantly faster than the 3 kJ/m2 treated fruits and controls. This could have significant nutritional benefit as the red colour of strawberries has been correlated with anthocyanin levels. On the other hand, treatment at the lower UV dose led to a lag in colour development. The amenability of the equipment utilised for commercial application is discussed.
4

Carbon Dioxide Treatment on Strawberry Fruit Prep and Its Effect on Shelf Life

Dawson, Bryan Sterling 01 December 2018 (has links)
This research evaluates the effectiveness of using carbon dioxide (CO2) pressurization to extend strawberry fruit prep shelf life for the eventual use in yogurt applications. In this experiment, CO2 treatments of 5, 15, and 25 pounds per square inch were used as a processing step to inactivate microorganisms, which in turn could aid in the preservation and maintenance of product quality during storage thus improving consumer acceptance of the yogurt. Microbial levels of the fruit prep treatments were monitored over a six-week period by enumerating aerobic plate counts and yeast and mold levels. The color, pH, and texture of the treatments were also evaluated throughout the duration of the study. Sensory attributes of the product were evaluated by formal sensory panel at the beginning of the study to gather consumer feedback on potential changes introduced by the treatment to the finished product. For sensory analysis, the different CO2 treatments of fruit prep were mixed with plain yogurt and given to panelists. The different treatments were taken from one homogenous mixture of fruit prep and then were randomly divided into five different treatment groups: a control group, a thermally processed group, and the three different pressure levels of CO2. Results from the experiment showed that carbonation does not negatively impact product overall acceptability. Shelf life results showed that CO2 treatments are not effective in maintaining or extending the shelf life of strawberry fruit prep when compared to a thermal treatment.

Page generated in 0.1153 seconds