• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 230
  • 85
  • 73
  • 14
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 7
  • 5
  • 4
  • 2
  • 2
  • Tagged with
  • 529
  • 190
  • 186
  • 148
  • 98
  • 72
  • 71
  • 58
  • 49
  • 49
  • 44
  • 41
  • 41
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Acoustic Response Validation of a Finite Cylindrical Shell with Multiple Loading Conditions

Gallagher, Chad Taylor 25 June 2018 (has links)
Cylindrical shells are used for a variety of engineering applications such as undersea vehicles and aircraft. The models currently used to determine the vibration characteristics of these shells are often approximated by assuming the shell is infinitely long or has shear-diaphragm boundary conditions. These models also ignore complex loading conditions such as plane waves in favor of point forces or free vibration models. This work expands on the capabilities of these models by examining the acoustic response of a finite length cylinder with flat plate endcaps to multiple types of distributed loading conditions. Starting with the Donnell equations of motion for thin cylinders and the classical plate theory equations of motion for the endcaps, spacial domain displacement field solutions for the shell and plates take an assumed form that includes unknown wave propagation coefficients. These solutions are substituted into stress boundary conditions and continuity equations evaluated at the intersections between the shell and plates. An infinite summation is contained within the boundary conditions and continuity equations which is decoupled, truncated, and compiled in matrix form to allow for the propagation coefficients to be found via a convergent sum of vectors. System responses due to a ring loading and multiple cases of plane waves are studied and validated using a finite element analysis of the system. It is shown that the analytical model matches the finite element model well. / Master of Science
112

Cytocompatible coatings to control cell activity

Drachuk, Irina 27 August 2014 (has links)
Cell-surface engineering has been attracting increased interest in the field of biotechnology, tissue engineering, cell therapy, or biosensors/bioelectronics. Thin nanocoatings or sometimes referred as nanoshells allow for modifying and controlling variety of cell properties, specifically retardation of cell division or growth, masking immunological properties, providing chemical and mechanical resistance to external stressors, and ability to further functionalize shells in order to guide cells attachment, their proliferation and function in artificial environment. Bottom-up approach, utilizing layer-by-layer (LbL) assembly of wide variety of different components (synthetic and natural polyelectrolytes, nanoparticles, and other nano-structures) has been introduced and elaborated to modify cell surfaces. Despite successful examples of the LbL-based cell encapsulation with polyelectrolytes, cytotoxicity of their polycation components possesses severe limitations for this approach. Additionally, by constructing rigid non-permeable shells can suppress the essential properties of cells. In this view, the goal of this research is to explore the formation of cyto-compatible ultrathin coatings from synthetic and natural polymers through utilization of non-cationic counterparts, with possibility to actively control cell division, provide protection from external environment, and temper shell properties in order to elicit or change specific cell response.
113

FINITE ELEMENT ANALYSIS OF SHELL STRUCTURES.

Noelting, Swen Erik, 1960- January 1986 (has links)
No description available.
114

GEOMETRICALLY NONLINEAR ANALYSIS OF THIN ARBITRARY SHELLS USING DISCRETE-KIRCHHOFF CURVED TRIANGULAR ELEMENTS (FINITE).

SUBRAMANIAN, BALAKRISHNAN. January 1985 (has links)
The research work presented here deals with the problems of geometrically nonlinear analysis of thin shell structures. The specific objective was to develop geometrically nonlinear formulations, using Discrete-Kirchhoff Curved Triangular (DKCT) thin shell elements. The DKCT elements, formulated in the natural curvilinear coordinates, based on arbitrary deep shell theory and representing explicit rigid body modes, were successfully applied to linear elastic analysis of composite shells in an earlier research work. A detailed discussion on the developments of classical linear and nonlinear shell theories and the Finite Element applications to linear and nonlinear analysis of shells has been presented. The difficulties of developing converging shell elements due to Kirchhoff's hypothesis have been discussed. The importance of formulating shell elements based on deep shell theory has also been pointed out. The development of shell elements based on Discrete-Kirchhoff's theory has been discussed. The development of a simple 3-noded curved triangular thin shell element with 27 degrees-of-freedom in the tangent and normal displacements and their first-order derivatives, formulated in the natural curvilinear coordinates and based on arbitrary deep shell theory, has been described. This DKCT element has been used to develop geometrically nonlinear formulation for the nonlinear analysis of thin shells. A detailed derivation of the geometrically nonlinear (GNL) formulation, using the DKCT element based on the Total Lagrangian approach and the principles of virtual work has been presented. The techniques of solving the nonlinear equilibrium equations, using the incremental methods has been described. This includes the derivation of the Tangent Stiffness matrix. Various Newton-Raphson solution algorithms and the associated convergence criteria have been discussed in detail. Difficulties of tracing the post buckling behavior using these algorithms and hence the necessity of using alternative techniques have been mentioned. A detailed numerical evaluation of the GNL formulation has been carried out by solving a number of standard problems in the linear buckling and GNL analysis. The results compare well with the standard solutions in linear buckling cases and are in general satisfactory for the GNL analysis in the region of large displacements and small rotations. It is concluded that this simple and economical element will be an ideal choice for the expensive nonlinear analysis of shells. However, it is suggested that the element formulation should include large rotations for the element to perform accurately in the region of large rotations.
115

Stability and vibration of mindlin plate with or without hole

陳衍昌, Chan, Hin-cheong, Andrew. January 1984 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
116

Thermal stresses in closed spherical shells /

Keene, Frank W. January 1991 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1991. / Typescript. References: leaves 139-147.
117

A boundary layer theory for axisymmetric vibration of circular cylindrical, elastic shells

Widera, Otto Ernst, January 1965 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1965. / Typescript. Vita. Includes bibliographical references.
118

The dynamic response of thin cylindrical shells under initial stresses and subjected to general three dimensional surface loads

Liao, Nan-Kang, January 1970 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 144-148).
119

Nonlinear analysis of dynamic stability of elastic shells of revolution

Hendricks, Marcus George, January 1974 (has links)
Thesis--University of Florida. / Description based on print version record. Typescript. Vita. Bibliography: leaves 126-130.
120

A bending analysis of hyperbolic paraboloid shells

Ferrante, William Robert January 1962 (has links)
Ph. D.

Page generated in 0.0535 seconds