• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 13
  • 10
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 70
  • 70
  • 43
  • 28
  • 18
  • 14
  • 13
  • 13
  • 13
  • 13
  • 11
  • 10
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Colonization of cattle by non-O157 Shiga Toxin-producing <i>Escherichia coli</i> serotypes

Asper, David Jose 29 September 2009 (has links)
Shiga toxin-producing <i>E. coli</i> (STEC) is an important food- and water-borne pathogen of humans, causing Hemorrhagic Colitis and Haemolytic Uremic Syndrome. Colonization of both cattle and human hosts is mediated through the action of effector molecules secreted via a type III secretion system (T3SS), which forms attaching and effacing lesions (A/E). The necessary effectors which form A/E by manipulation of host signalling and actin nucleation are present on a pathogenicity island called the Locus of Enterocyte Effacement (LEE).<p> It has been reported that vaccination of cattle with Type III-secreted proteins (T3SPs) from STEC O157 resulted in decreased shedding. In order to extend this to non-O157 STEC serotypes, we examined the serological cross-reactivity of T3SPs of serotypes O26:H11, O103:H2, O111:NM and O157:H7. Groups of cattle were vaccinated with T3SPs produced from each of the serotypes and the magnitude and specificity of the responses were measured resulting in limited cross reactivity. Overall, results suggest that vaccination of cattle with T3SPs as a means of reducing the risk of STEC transmission to humans will induce protection that is serotype specific.<p> To pursue the possibility of a cross-protective vaccine, we investigated the protective properties of a chimeric Tir protein against STEC serotypes. Several studies have reported that Tir is highly immunogenic and capable of producing high antibody titers. Potter and colleagues also demonstrated that the vaccination of cattle with ∆tir STEC O157 strain did not protect as well as the wildtype strain. We constructed thirty-mer peptides to the entire STEC O157 Tir protein, as well as to the intimin binding domain of the Tir protein from STEC serotype O26, O103 and O111. Using sera raised against STEC O157 and non-O157 T3SPs, we identified a number of immunogenic peptides containing epitopes unique to a particular serotype. Two different chimeric Tir proteins were constructed containing the STEC O157 Tir protein fused with six STEC non-O157 peptides with or without the Leukotoxin produced by <i>Mannheimia haemolytica</i>. However, the vaccination of mice with the chimeric protein did not protect against challenge with STEC O157 or STEC O111. These results suggest that to achieve cross protection against STEC serotypes using a recombinant protein vaccine, other immunogenic and protective antigens must also be included.<p> In order to identify other immunogenic and cross-protective antigens we cloned and expressed the genes coding for 66 effectors and purified each as histidine-tagged proteins. These included 37 LEE-encoded proteins and 29 non-LEE effectors. The serological response against each protein was measured by Western blot analysis and an enzyme-linked immunosorbent assay (ELISA) using sera from rabbits immunized with T3SPs from four STEC serotypes, experimentally infected cattle and human sera from 6 HUS patients. A total of 20 proteins were recognized by at least one of the STEC T3SP- vaccinated rabbits using Western blots. Sera from experimentally infected cattle and HUS patients were tested using an ELISA against each of the proteins. Tir, EspB, EspD, EspA and NleA were recognized by the majority of the samples tested. Overall, proteins such as Tir, EspB, EspD, NleA and EspA were highly immunogenic for both vaccinated and naturally infected subjects.<p> Based on the above results, two different mixtures of secreted proteins (5 proteins and 9 proteins) were used to vaccinate mice and test the level of shedding following challenge with STEC O157. Overall, the cocktail vaccine containing 9 immunogenic effectors including Tir, EspB, EspD, NleA and EspA was capable of reducing shedding as effectively as the current STEC T3SPs vaccine, Econiche®.
32

Progress in the search for ricin A chain and shiga toxin inhibitors

Bai, Yan, 1977- 27 February 2012 (has links)
Ricin and Shiga toxin type 1 are potent cytotoxins known as ribosome inhibition proteins, abbreviated RIPs. Proteins of this family shut down protein synthesis by removing a critical adenine in the conserved stem-loop structure of 28S rRNA. Due to its exquisite cytotoxicity, the plant toxin ricin has been used as a biological warfare agent. Although great achievement has been made on ricin research, including catalytic mechanism and structure analysis, there is still no specific treatment available for ricin exposure. In addition, ricin A chain inhibitors may also be useful against the homologous bacterial proteins shiga toxins, which are responsible for dysentery, and diseases related to food poisoning, including hemolytic uremic syndrome. Previous study on RTA inhibitor search has provided a number of substrate analog inhibitors, all of which, however, are weaker inhibitors. Therefore, the goal of this work is to improve the binding affinity of known inhibitors and to discovery new scaffolds for inhibitor discovery and development. In this work, multiple approaches were employed for this purpose, including optimizing known inhibitors and searching new inhibitors by Virtual Drug Screening (VDS) and High Throughput Screening (HTS). A number of new RTA inhibitors were discovered by these strategies, which provide a variety of pharmacophores for RTA inhibitor design, and also added a new line of evidence for VDS as an advanced technology for drug discovery and development. / text
33

Molecular Mechanisms of E. coli Shiga Toxin Pathogenesis

Petruzziello, Tania Nadia 31 August 2012 (has links)
Shiga toxin-producing E. coli (STEC) comprise a group of pathogenic organisms that elaborate a family of protein exotoxins known as Shiga toxins (Stxs). Intestinal infection with these organisms may lead to hemorrhagic colitis and hemolytic uremic syndrome, a life-threatening condition characterized by thrombocytopenia, non-immune hemolytic anemia, and acute renal failure. Vascular endothelial damage is believed to be a key initiating event in Stx-mediated diseases. At the molecular level, these toxins depurinate human 28S rRNA and inhibit translation. In addition, at concentrations that only minimally affect global protein synthesis, they have been found to alter expression of specific target genes. To better understand the endothelial damage induced by Stx, we investigated the global effects of Stx on endothelial gene expression, and defined a specific group of genes whose expression was altered by the toxin. Of interest, the CXCR4/CXCR7/SDF-1 chemokine pathway, a pathway central to vascular biology, was activated by Stx. In vitro studies demonstrated that Stx enhanced both transcript levels of these molecules, as well as their association with ribosomes. To define the relevance of these findings in vivo, a mouse model was established and key changes were noted in plasma and tissue content of CXCR4/CXCR7/SDF-1 following Stx exposure. Inhibition of CXCR4/SDF-1 interaction decreased indices of endothelial activation and organ injury and improved animal survival. Importantly, in children infected with E. coli O157:H7, plasma SDF-1 levels were significantly elevated in individuals who progressed to hemolytic uremic syndrome. A second pathway critical to endothelial health and function is VEGF signaling. Of interest, our endothelial gene expression analyses revealed changes in this pathway in vitro. VEGF mRNA association with cellular polyribosomes increased following Stx treatment. Further studies in vivo demonstrated decreased cardiac function and blood pressure, and increased vascular permeability in specific tissues. VEGF, an important inducer of vascular permeability, increased in mouse plasma. Additionally, altered mRNA expression was observed in key organs, such as the kidney and heart, following Stx challenge. Inhibition of VEGF significantly improved survival of animals treated with Stx, indicating that VEGF plays a role in Stx-mediated pathogenesis. Moreover, in vitro studies demonstrated that Stx-mediated endothelial permeability was attenuated in the presence of a VEGF inhibitor. Taken together, these data indicate that E. coli-derived Stxs induce pathological changes in two pathways key to vascular biology. These pathways represent novel targets for the development of preventative and therapeutic strategies for complications associated with Shiga toxin-producing E. coli infection.
34

Molecular Mechanisms of E. coli Shiga Toxin Pathogenesis

Petruzziello, Tania Nadia 31 August 2012 (has links)
Shiga toxin-producing E. coli (STEC) comprise a group of pathogenic organisms that elaborate a family of protein exotoxins known as Shiga toxins (Stxs). Intestinal infection with these organisms may lead to hemorrhagic colitis and hemolytic uremic syndrome, a life-threatening condition characterized by thrombocytopenia, non-immune hemolytic anemia, and acute renal failure. Vascular endothelial damage is believed to be a key initiating event in Stx-mediated diseases. At the molecular level, these toxins depurinate human 28S rRNA and inhibit translation. In addition, at concentrations that only minimally affect global protein synthesis, they have been found to alter expression of specific target genes. To better understand the endothelial damage induced by Stx, we investigated the global effects of Stx on endothelial gene expression, and defined a specific group of genes whose expression was altered by the toxin. Of interest, the CXCR4/CXCR7/SDF-1 chemokine pathway, a pathway central to vascular biology, was activated by Stx. In vitro studies demonstrated that Stx enhanced both transcript levels of these molecules, as well as their association with ribosomes. To define the relevance of these findings in vivo, a mouse model was established and key changes were noted in plasma and tissue content of CXCR4/CXCR7/SDF-1 following Stx exposure. Inhibition of CXCR4/SDF-1 interaction decreased indices of endothelial activation and organ injury and improved animal survival. Importantly, in children infected with E. coli O157:H7, plasma SDF-1 levels were significantly elevated in individuals who progressed to hemolytic uremic syndrome. A second pathway critical to endothelial health and function is VEGF signaling. Of interest, our endothelial gene expression analyses revealed changes in this pathway in vitro. VEGF mRNA association with cellular polyribosomes increased following Stx treatment. Further studies in vivo demonstrated decreased cardiac function and blood pressure, and increased vascular permeability in specific tissues. VEGF, an important inducer of vascular permeability, increased in mouse plasma. Additionally, altered mRNA expression was observed in key organs, such as the kidney and heart, following Stx challenge. Inhibition of VEGF significantly improved survival of animals treated with Stx, indicating that VEGF plays a role in Stx-mediated pathogenesis. Moreover, in vitro studies demonstrated that Stx-mediated endothelial permeability was attenuated in the presence of a VEGF inhibitor. Taken together, these data indicate that E. coli-derived Stxs induce pathological changes in two pathways key to vascular biology. These pathways represent novel targets for the development of preventative and therapeutic strategies for complications associated with Shiga toxin-producing E. coli infection.
35

Evaluation of a novel commercial ground beef production system using a chlorinated nanobubble antimicrobial technology to control Shiga toxin-producing Escherichia coli and Salmonella spp. surrogates

Wilder, Amanda Jean January 1900 (has links)
Master of Science / Food Science Institute - Animal Sciences and Industry / Randall K. Phebus / A variety of antimicrobial processes are used to reduce pathogen risks on commercially processed raw beef. Little research has evaluated chlorinated water on beef tissues, especially in a processing water dip scenario. Interest in nanobubble technology has increased due to its proposed surfactant properties, but it is undetermined whether this improves antimicrobial effectiveness of chlorine-based solutions in food applications. Benchtop studies were conducted to evaluate chlorinated nanobubble waters (0 to 11.94 ppm) against Shiga toxin-producing Escherichia coli O26, O45, O103, O111, O121, O145, and O157:H7 (STEC-7), Salmonella spp., and USDA-approved non-pathogenic STEC surrogates 1) in pure culture with the goal of characterizing the lethality contributions of pH (5 or 7), temperature, free available chlorine level (FAC), inclusion of nanobubbles, or a combination thereof; 2) in select chlorinated nanobubble “red water” (water containing 0.1% beef purge) solutions; and 3) on the surface of lean and fat beef tissue. In pure culture solutions, surrogates demonstrated greater resistance (P ≤ 0.05) to chlorinated solutions (3.4-5.5 log CFU/mL reductions) with increased reductions at the higher (11.94 ppm) FAC levels. STEC-7 and Salmonella population reductions were also notably reduced (3.3-7.1 log CFU/mL) by the higher FAC concentrations. No definitive impacts of temperature, nanobubble inclusion, or acidic pH were observed. At an average 5.23 ppm FAC in red water, all microbial populations were reduced by > 6 log CFU/mL after 60 minutes. Reductions of target organisms on inoculated lean and fat tissues were ≤ 1 log CFU/g in red water; likely due to the inability to maintain FAC levels above 0.7 ppm in the presence of organic loading. An in-plant antimicrobial validation study of a proprietary raw beef manufacturing process was conducted to determine the effectiveness of a recirculating acidic nanobubble water system, chlorinated to 5 ppm FAC using EO water generated concentrate, against the USDA-approved STEC surrogates. Preliminarily, inoculated beef trim was introduced into the system targeting 5 ppm FAC; chlorine concentrate reinfusion rates were determined to establish applicable operational parameters and sampling strategies for the system. An optimized in-plant study was conducted. Meat inoculated at ~ 7 log CFU/g was introduced into the recirculating chlorinated nanobubble system every other day over 6 days, achieving an average 1.6 log CFU/g surrogate reduction on inoculated meat throughout the manufacturing process. Approximately 2.7 log CFU/g of residual surrogates were recovered on non-inoculated meat ~35 minutes after inoculated meat entered the system, indicating that harborage of microbial contamination on processing equipment can lead to subsequent contamination carry-over that must be controlled during processing. Surrogate organisms were recovered by enrichment only from non-inoculated meat 24 h after inoculated meat processing on alternate days, likely stemming from inadequately sanitized processing equipment after inoculated batch processing. Control of the residual surrogate population in the system following inoculation was accomplished through daily equipment sanitation and boosting recirculated processing water to 50 ppm during a 4-h sanitation period (no beef entering system). The optimized study will be used as an antimicrobial process validation against STEC and Salmonella spp. in beef manufacturing.
36

Desenvolvimento de uma nova estratégia vacinal contra síndrome hemolítica urêmica utilizando linhagens geneticamente modificadas de Bacillus subtilis capazes de expressar a toxina Stx2 de EHEC. / Development of a new vaccine approach against hemolytic uremic syndrome using genetically modified Bacillus subtilis strain expressing Stx2 EHEC toxin.

Priscila Aparecida Dal Pozo Gomes 25 February 2008 (has links)
A Síndrome Hemolítica Urêmica (SHU) é a principal doença associada à infecção com linhagens de Escherichia coli produtoras de toxina de Shiga (Stx), doença para qual não há uma vacina ou tratamento específico. A toxina Stx é formada por uma subunidade A enzimaticamente ativa e uma B pentamérica responsável pela ligação da toxina na célula hospedeira. Neste trabalho propomos o uso de Bacillus subtilis, uma bactéria não patogênica e formadora de esporos, como veículo vacinal para a expressão de formas atóxicas da Stx2, sob o controle de um promotor induzível por estresse (PgsiB). Camundongos BALB/c imunizados com células vegetativas ou esporos das linhagens vacinais de B. subtilis, por diferentes vias, induziram baixos níveis de anticorpos anti-Stx em soro (IgG) e fezes (IgA). Avaliamos também o potencial imunogênico da Stx gerada em linhagens recombinates de E. coli, mas os anticorpos gerados não foram capazes de neutralizar a toxina nativa. Os resultados indicam que formas alternativas de expressão e/ou o uso de adjuvantes são necessárias para gerar formulações vacinais eficazes contra a SHU. / The Hemolytic Uremic Syndrome (HUS) is the main disease associated with infections with Shiga toxin (Stx) - producing Escherichia coli strain and no effective vaccine or treatment exist. The Stx toxin consist of an enzymatically active A subunit and a pentameric B subunit responsible toxin binding to host cells. In this work we propose the use of Bacillus subtilis, a harmless spore form bacteria as a vaccine vehicle for the expression atoxic forms of Stx2, under the control of stress inducible (PgsiB) promoter. BALB/c mice immunized with vegetative cells and spores of the B. subtilis vaccine strain using different immunization routes elicited low specific antibody levels at serum (IgG) or fecal extracts (IgA). We also investigated the immunogenic potencial of StxB purified from recombinant E. coli strain, but the induced anti-StxB antibodies did not neutralize the native toxin. The results indicate that alternative expression system or the incorporation of the adjuvants are required for the generation of vaccine formulation active against HUS.
37

Surface Directed Monoclonal Antibodies against STEC Aid in the Reduction of Pathogen Detection Times from Food and Water

Kumaran, Dilini January 2016 (has links)
The diagnostic methods implemented at the Canadian Food Inspection Agency for the detection of Shiga toxin producing E. coli (STEC) are time consuming and tedious, taking up to 5 days before a positive sample can be confirmed. The goal of this project was to streamline the detection procedure for serogroup O157 and 6 important non-O157 serogroups of STEC. Following a short enrichment step (4-6 hrs), two approaches were considered: (1) the filtration of enrichment culture through a gradient of filtration membranes (decreasing pore sizes), followed by capture using specific monoclonal antibody (mAb)-coated Dynabeads, and detection via fluorescence microscopy, (2) the addition of enrichment culture into a flow through system consisting of a column packed with large polystyrene beads (≥ 100 μm) coated with specific mAbs for capture. The results indicate that the filtration approach can only be applied to simpler food matrices. However, at least 100 CFU of the target STEC could be recovered using the filtration system following 4 hrs of enrichment of these matrices spiked with ≤ 15CFU of the target STEC. Similar capture results were obtained in the second approach using specific mAbs immobilized on covalently coupled protein G polystyrene beads and diluted enrichment media. A combination of these strategies together with immunofluorescence microscopy (IMS) and polymerase chain reaction (PCR) could provide diagnostic laboratories with a means to confirm a positive sample within 2 days of testing.
38

Phase separation of biomimetic membranes: / Influence of glycosphingolipid structure and substrate adhesion

Sibold, Jeremias 14 October 2019 (has links)
No description available.
39

Investigating the contributions of leukocyte responses and kidney cell stress on Shiga- toxin pathogenesis

Parello, Caitlin Suzanne Leibowitz 12 March 2016 (has links)
BACKGROUND: Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC) are emerging food- and water- borne pathogens and a leading cause of acute renal failure in otherwise healthy children. Ribotoxic Shiga toxins are the primary virulence factors and are responsible for the potentially lethal EHEC complication of hemolytic uremic syndrome (HUS). HUS, defined clinically by microangiopathic hemolytic anemia, thrombocytopenia and thrombotic microangiopathy which contribute to acute kidney injury or renal failure, is associated with significant patient morbidity. No pathogen- or toxin- specific therapeutic exists, and antibiotic use is contraindicated. Understanding the molecular mechanisms of Stx toxicity could lead to the development of Stx specific therapies. HYPOTHESIS: Experimental evidence suggests a role for leukocytes in systemic Stx2 trafficking and in Stx2 mediated kidney pathology. Cell stress responses, such as the ER stress response and ribosomal stress response, are hypothesized to induce apoptosis, and ultimately cell death, contributing to kidney injury; however these processes have only been described in vitro. If leukocyte and kidney cell stress responses are playing significant roles in in vivo Stx2 kidney injury, then down-regulation of these processes may provide therapeutic benefit. RESULTS: Mice injected with Stx2 or infected with Stx2-producing bacteria developed lethal kidney injury as judged by biomarkers and histopathology. Experimentally induced leukopenia did not alter kidney injury in either model, but did cause striking increases in the intestinal bacterial colonization which was dependent on the presence of Stx2. No Stx binding capacity was observed for either murine or human leukocytes ex vivo. Transcriptional evidence of kidney ER stress and apoptotic biomarkers were observed in both models of Stx2-mediated kidney injury, but down-regulation of these processes did not yield therapeutic benefit. CONCLUSIONS: Contrary to the current disease paradigm, no major role for leukocytes in systemic Stx2 trafficking or kidney injury was observed in vivo, but a novel role for host immune responses to Stx2 in the control of intestinal colonization by Stx2-producing bacteria was identified. Cell stress and apoptosis is induced by Stx2 in vivo but prevention of these is not sufficient to appreciably alter organ injury or survival in the murine models.
40

CHARACTERIZATION OF NEUTRALIZING RESPONSES TO ANTHRAX TOXINS AND ISOLATION AND CHARACTERIZATION OF THE SHIGA-TOXIN ENCODING PHAGE OF ESCHERICHIA COLI 0157:H7

HANSON, JAMES F. 05 October 2004 (has links)
No description available.

Page generated in 0.0424 seconds