• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Cold Acclimation on Changes in Muscle Activity

Hans Christian, Tingelstad 24 October 2013 (has links)
Human beings have been exposed to different cold conditions throughout time, and have through cold acclimation developed mechanisms to survive in these conditions. Cold acclimation can be elicited through exposure to natural cold climates, or artificially induced in a laboratory to study the body’s response to repeated cold exposures. Several studies looking at the effects of cold acclimation in humans have been conducted during the last 50 years, and have reported that cold acclimation can lead to a change in skin and core temperature, heat production and shivering. An accurate quantification of shivering thermogenesis (ST) during cold acclimation has not been done before, and most previous measurements of shivering during cold acclimation have been inaccurate and inadequate. In this study a Liquid Condition Suits (LCS) was used to elicit cold acclimation (10°C, 2hr daily, for 4 weeks) while an accurate measurement of the effect of cold acclimation on changes in muscle activity was conducted. In CHAPTER 2, results showed that four weeks of cold acclimation at 10°C did not change skin and core temperature, heat production or ST. The effects on shivering pattern and fuel selection were also analysed, but no effects of cold acclimation could be observed. These measurements were a part of a larger study, in which the effects of cold acclimation on changes in BAT were the main outcome measures. These data showed that an increase in BAT volume (45%) and activity (120%) were the only observed effects of cold acclimation. In CHAPTER 3, we set out to assess if changes in shivering from pre to post cold acclimation are associated with changes in BAT volume, and if the amount of BAT a participant possesses prior to cold acclimation can be used to predict changes in shivering intensity during cold acclimation. The interindividual variability in changes in thermal responses, heat production, shivering and BAT volume occurring between subjects during four weeks of cold acclimation was also addressed in this section.
2

The Effect of Cold Acclimation on Changes in Muscle Activity

Hans Christian, Tingelstad January 2013 (has links)
Human beings have been exposed to different cold conditions throughout time, and have through cold acclimation developed mechanisms to survive in these conditions. Cold acclimation can be elicited through exposure to natural cold climates, or artificially induced in a laboratory to study the body’s response to repeated cold exposures. Several studies looking at the effects of cold acclimation in humans have been conducted during the last 50 years, and have reported that cold acclimation can lead to a change in skin and core temperature, heat production and shivering. An accurate quantification of shivering thermogenesis (ST) during cold acclimation has not been done before, and most previous measurements of shivering during cold acclimation have been inaccurate and inadequate. In this study a Liquid Condition Suits (LCS) was used to elicit cold acclimation (10°C, 2hr daily, for 4 weeks) while an accurate measurement of the effect of cold acclimation on changes in muscle activity was conducted. In CHAPTER 2, results showed that four weeks of cold acclimation at 10°C did not change skin and core temperature, heat production or ST. The effects on shivering pattern and fuel selection were also analysed, but no effects of cold acclimation could be observed. These measurements were a part of a larger study, in which the effects of cold acclimation on changes in BAT were the main outcome measures. These data showed that an increase in BAT volume (45%) and activity (120%) were the only observed effects of cold acclimation. In CHAPTER 3, we set out to assess if changes in shivering from pre to post cold acclimation are associated with changes in BAT volume, and if the amount of BAT a participant possesses prior to cold acclimation can be used to predict changes in shivering intensity during cold acclimation. The interindividual variability in changes in thermal responses, heat production, shivering and BAT volume occurring between subjects during four weeks of cold acclimation was also addressed in this section.

Page generated in 0.3342 seconds