1 |
Generalized Constrained InterpolationMerrell, Jacob Porter 04 April 2008 (has links) (PDF)
Interpolation is essential in digital image processing, especially magnification. Many different approaches to interpolation specific to magnification have been developed in an effort to overcome the shortcomings of bilinear and bicubic interpolation. One of these approaches, Constraint-Based Interpolation, produces an image that is free of jaggies and has less blurring than bilinear or bicubic interpolation. Although Constraint-Based Interpolation produces a visually pleasing image, there are user-chosen parameters that make the algorithm difficult to use. In this thesis we propose a method for automatic selection of those parameters and an extension of Constraint-Based Interpolation to other forms of image manipulation, such as skew, rotation, warp, or any other invertable image transformation. By extending Constaint-Based Interpolation the same improvements observed in magnification could be observed in these other image transformations.
|
2 |
Traitement des images multicomposantes par EDP : application à l'imagerie TEP dynamique / Vector-valued image processing with PDEs : application to dynamic PET imagingJaouen, Vincent 26 January 2016 (has links)
Cette thèse présente plusieurs contributions méthodologiques au traitement des images multicomposantes. Nous présentons notre travail dans le contexte applicatif difficile de l’imagerie de tomographie d’émission de positons dynamique (TEPd), une modalité d’imagerie fonctionnelle produisant des images multicomposantes fortement dégradées. Le caractère vectoriel du signal offre des propriétés de redondance et de complémentarité de l’information le long des différentes composantes permettant d’en améliorer le traitement. Notre première contribution exploite cet avantage pour la segmentation robuste de volumes d’intérêt au moyen de modèles déformables. Nous proposons un champ de forces extérieures guidant les modèles déformables vers les contours vectoriels des régions à délimiter. Notre seconde contribution porte sur la restauration de telles images pour faciliter leur traitement ultérieur. Nous proposons une nouvelle méthode de restauration par équations aux dérivées partielles permettant d’augmenter le rapport signal sur bruit d’images dégradées et d’en renforcer la netteté. Appliqués à l’imagerie TEPd, nous montrons l’apport de nos contributions pour un problème ouvert des neurosciences, la quantification non invasive d’un radiotraceur de la neuroinflammation. / This thesis presents several methodological contributions to the processing of vector-valued images, with dynamic positron emission tomography imaging (dPET) as its target application. dPET imaging is a functional imaging modality that produces highly degraded images composed of subsequent temporal acquisitions. Vector-valued images often present some level of redundancy or complementarity of information along the channels, allowing the enhancement of processing results. Our first contribution exploits such properties for performing robust segmentation of target volumes with deformable models.We propose a new external force field to guide deformable models toward the vector edges of regions of interest. Our second contribution deals with the restoration of such images to further facilitate their analysis. We propose a new partial differential equation-based approach that enhances the signal to noise ratio of degraded images while sharpening their edges. Applied to dPET imaging, we show to what extent our methodological contributions can help to solve an open problem in neuroscience : noninvasive quantification of neuroinflammation.
|
Page generated in 0.0675 seconds