• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INITIAL ASSESSMENT OF THE "COMPRESSIBLE POOR MAN'S NAVIER{STOKES (CPMNS) EQUATION" FOR SUBGRID-SCALE MODELS IN LARGE-EDDY SIMULATION

Velkur, Chetan Babu 01 January 2006 (has links)
Large-eddy simulation is rapidly becoming the preferred method for calculations involving turbulent phenomena. However, filtering equations as performed in traditional LES procedures leads to significant problems. In this work we present some key components in the construction of a novel LES solver for compressible turbulent flow, designed to overcome most of the problems faced by traditional LES procedures. We describe the construction of the large-scale algorithm, which employs fairly standard numerical techniques to solve the Navier{Stokes equations. We validate the algorithm for both transonic and supersonic ow scenarios. We further explicitly show that the solver is capable of capturing boundary layer effects. We present a detailed derivation of the chaotic map termed the \compressible poor man's Navier{Stokes (CPMNS) equation" starting from the Navier{Stokes equations themselves via a Galerkin procedure, which we propose to use as the fluctuating component in the SGS model. We provide computational results to show that the chaotic map can produce a wide range of temporal behaviors when the bifurcation parameters are varied over their ranges of stable behaviors. Investigations of the overall dynamics of the CPMNS equation demonstrates that its use increases the potential realism of the corresponding SGS model.
2

Rapid Decompression of Dense Particle Beds

January 2019 (has links)
abstract: Rapid expansion of dense beds of fine, spherical particles subjected to rapid depressurization is studied in a vertical shock tube. As the particle bed is unloaded, a high-speed video camera captures the dramatic evolution of the particle bed structure. Pressure transducers are used to measure the dynamic pressure changes during the particle bed expansion process. Image processing, signal processing, and Particle Image Velocimetry techniques, are used to examine the relationships between particle size, initial bed height, bed expansion rate, and gas velocities. The gas-particle interface and the particle bed as a whole expand and evolve in stages. First, the bed swells nearly homogeneously for a very brief period of time (< 2ms). Shortly afterward, the interface begins to develop instabilities as it continues to rise, with particles nearest the wall rising more quickly. Meanwhile, the bed fractures into layers and then breaks down further into cellular-like structures. The rate at which the structural evolution occurs is shown to be dependent on particle size. Additionally, the rate of the overall bed expansion is shown to be dependent on particle size and initial bed height. Taller particle beds and beds composed of smaller-diameter particles are found to be associated with faster bed-expansion rates, as measured by the velocity of the gas-particle interface. However, the expansion wave travels more slowly through these same beds. It was also found that higher gas velocities above the the gas-particle interface measured \textit{via} Particle Image Velocimetry or PIV, were associated with particle beds composed of larger-diameter particles. The gas dilation between the shocktube diaphragm and the particle bed interface is more dramatic when the distance between the gas-particle interface and the diaphragm is decreased-as is the case for taller beds. To further elucidate the complexities of this multiphase compressible flow, simple OpenFOAM (Weller, 1998) simulations of the shocktube experiment were performed and compared to bed expansion rates, pressure fluctuations, and gas velocities. In all cases, the trends and relationships between bed height, particle diameter, with expansion rates, pressure fluctuations and gas velocities matched well between experiments and simulations. In most cases, the experimentally-measured bed rise rates and the simulated bed rise rates matched reasonably well in early times. The trends and overall values of the pressure fluctuations and gas velocities matched well between the experiments and simulations; shedding light on the effects each parameter has on the overall flow. / Dissertation/Thesis / Rapid expansion of bed composed of [212, 297]micron particles. / Rapid expansion of bed composed of [44, 90]micron particles. / Rapid expansion of bed composed of [150, 212]micron particles. / Doctoral Dissertation Engineering 2019
3

Shock Tube Ignition Studies of Renewable Diesel Fuels for Medium and Heavy-Duty Transportation

Mohammed, Zuhayr Pasha 01 January 2024 (has links) (PDF)
Currently extensive research on alternative fuels is being conducted due to their increasing demand to reduce greenhouse emissions. One renewable fuel studied in this work is dimethyl ether (DME) blended with propane(C3H8) as a potential mixture for heavy-duty engines used in semi-trucks. The blend has the potential to drastically reduce particulate and greenhouse gas emissions compared to a conventional diesel engine operating under similar conditions. To develop the use of mixture, one must conduct detailed conceptual and simulation studies before progressing to detail studies in CFD, engine modifications, and live testing. For simulations, accurate high-fidelity chemical kinetic models are necessary. However, the validity of the chemical kinetic mechanism for operating conditions of a heavy-duty mixing-controlled compression (MCCI) engine was widely unknown until recent work presented here and published. In this work, we studied the ignition of DME and propane blends in a shock tube under MCCI engine conditions. Ignition delay time (IDT) gathered behind the reflected shock for DME-propane mixtures for heavy-duty compression ignition (CI) engine parameters. Testing was conducted for undiluted varieties spanning from temperatures of 700 to 1100 K at pressures ranging from 55 to 84 bar for various blends (100% CH3OCH3, 100% C3H8, 60% CH3OCH3/ 40% C3H8) of DME and propane were combusted in synthetic air (21% O2/ 79% N2). Several experiments were conducted at higher pressures (90-120 bar) to improve the model performance and accuracy. The ignition delay times (IDTs) were compared to recent mechanisms, including Aramco3.0, NUIG, and Dames et al. A common trend among the mechanisms was overpredicted experimental IDTs. Further studies were conducted by a sensitivity analysis using the Dames et al. model, and critical reactions sensitive to IDTs of DME-propane mixture near 60 bar are outlined. Chemical analysis was conducted on the NTC region to explain chemical kinetics which is critical for developing MCCI heavy duty engines.

Page generated in 0.0417 seconds