• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Smyková pevnost vlákny vyztuženého polymerního kompozitu / Shear strength of the fiber-reinforced polymer composite

Jurko, Michal January 2020 (has links)
The diploma thesis deals with the study of Inter-Laminar Shear Strength (ILSS) of polymer composites, based on unsaturated polyester resin with unidirectionally oriented basalt or glass fibers. The basis of the experimental part is the preparation of composite samples with different types of surface treatment of a fibers (a reinforcement) as well as the surface treatment itself. The untreated, the commercially treated fibers and the plasmatreated fibers used as reinforcement in the polymer composites were analysed by a short beam shear test and their ILSS was determined. The effect of various deposition conditions during Plasma-Enhanced Chemical Vapour Deposition (PECVD) on the value of ILSS of the composite with originally unsized glass or basalt fibers was studied. The impact of aging on the interlaminar shear strength of the composites was investigated for commercially treated glass fibers. The Scanning Electron Microscopy (SEM) is also used in the thesis together with the Energy Dispersive Spectroscopy (EDS). Based on all the results a proposal was made to correct and improve the deposition conditions and thus improve the interphase to achieve the required shear properties of polymer composites.
2

Design, manufacturing and testing of smart beams with EFPI strain sensor for damage detection

Sim, Lay M. January 2003 (has links)
This thesis aimed at the development of a fibre optic strain sensor-based damage detection and evaluation system (FODDAS) based on the composite beams. EFPI strain sensors were used with their integrity being assessed. Their performance, either bonded on the surfaces or embedded was examined extensively. They were shown to be adequate and reliable for strain measurements. Through-the-width damages were simulated by artificially-embedded delaminations, which were located at several through-the-thickness locations, each with two different sizes. The overall design considerations were guided by ply stresses and strains which were estimated by using the modified classical lamination theory (CLT). Considerable efforts were devoted to assessing the through-the-thickness mechanical behaviours of the beams containing optical fibres in three-point bending and short beam shear (SBS). They involved various optical fibre orientations with respect to 00 plies / longitudinal axis and at various through-the-thickness locations, each with different number of optical fibres. The understanding of these behaviours paved the way for the evaluation of the beam-based FODDAS. Smart preconditioned beams were subjected to the quasi -static loads whose magnitudes and locations were required to be well controlled. The viability and effectiveness of the beam-based FODDAS was evaluated in terms of strength and strain obtained by the embedded sensor as well as the surface-bonded strain gauges via the cross comparison of ten cases. For the strength, each beam was incrementally loaded up to the ultimate failure either in three-point bending or SBS. After each increment, the beam was unloaded and inspected for damage. For the given locations of EFPI-SS and artificial delamination as well as the sizes of the latter, it was found that the embedded EFPI-SSs were capable of picking up the stiffness degradation when the 10- mm as well as the 20-mm delamination was located at the 29-30 ply interface in the tensile region of a 32-ply quasi-isotropic carbon/epoxy smart composite beam. It was speculated from single tests results that the propagation of the embedded delamination of the sufficient size was able not only to be detected but also to be monitored by the sensors.
3

Matrix-dominated constitutive laws for composite materials

He, Yihong 06 July 2010 (has links)
Accurate three-dimensional stress-strain constitutive properties are essential to understanding complex deformation and failure mechanisms for materials with highly anisotropic mechanical properties. The large number of different methods and specimen types currently required to generate three-dimensional allowables for structural design slow down the material characterization. Also, some of the material constitutive properties are never measured due to prohibitive cost of the specimens needed. A method for measurement of three-dimensional constitutive properties using short-beam specimens subject to three-point bend load has been recently developed. This method is based on the Digital Image Correlation (DIC) full-field deformation measurement and closed-form stress approximation. The purpose of this work is to improve the accuracy of the constitutive properties through accurate stress solution. A method is developed based on a combination of full-field strain measurement and nonlinear finite element stress analysis in the material characterization. The nonlinear shear stress-strain relations are the major concern in this work. An iterative procedure is applied to update the nonlinear shear properties using iterative finite element simulations. The accuracy of the numerical procedure is verified by comparing the finite element strain results with full-field measurements. The procedure is further verified using the V-notched beam test results. Excellent agreement has been achieved in the verification. Simplicity of the short-beam specimens and accuracy of the constitutive property approximations make the present method attractive for measurement of three-dimensional stress-strain relations for anisotropic materials at various load rates.
4

Effects of Tackification Agents on Room Temperature Epoxy Mechanical Properties

Murray, Garen B. 14 June 2022 (has links)
When laying up dry composite materials and aligning the fibers in the appropriate directions it can be a challenge due to the dryness of the fiber and mold design. Several commercial products are available to help fix plies to molds keeping the proper fiber orientation depending upon mold geometry. Prepreg and wet layups do not have this problem due to the inherent inclusion of a matrix in their manufacturing, dry materials have no added epoxy at the time of layup and are therefore in need of assistance maintain position. The purpose of this research is to determine if Super 77™ or EPON™ 2002 increases or decreases mechanical properties of the neat resin and composite laminates; if the increase or decrease is dependent upon the type of epoxy, and if the amount of applied tackifier can be optimized towards a high or low application quantity to minimize any detrimental effects to mechanical properties. Each tackification agent was applied in high and low concentrations to eight composite panels, with two control panels. The EPON™ was applied manually and set with heat exposure while the Super 77™ was sprayed from an aerosol can. The Super 77™ plies were stacked and pressed by hand while the EPON™ plies were stacked and ironed together to create panels, which were then infused with one of two room temperature infusion epoxies, MVS 610 or INF 114. The panels were then cut to specimen size for testing. Neat resin specimens were cast in silicone molds with high and low concentrations of tackifiers and allowed to cure for 12 hours at room temp, then heated to 60° C for 8 Both Super 77™ and EPON™ 2002 reduced the SBS for both epoxies, but Super 77™ reduced the short beam shear more than EPON™ 2002. The modulus of the neat resin cast specimens with high concentration were between 0 to 20% lower than neat resin with no tackifier; the tensile strength was increased for those specimens with Super 77™ and lower for those with EPON™ 2002. Similarly, the Charpy test resulted in higher values for Super 77™ than for EPON™ 2002. The effects of Super 77™ and EPON™ 2002 are complex and varied depending on application concentration, resin, and tackifier type; but the addition of any tackifier reduces mechanical properties from non-tackified laminates.
5

Povrchové a mechanické vlastnosti a-CSi:H a a-CSiO:H vrstev / Surface and mechanical properties of a-CSi:H and a-CSiO:H films

Plichta, Tomáš January 2020 (has links)
The dissertation thesis deals with the preparation and characterisation of a-CSi:H and a CSiO:H thin films prepared using the process of plasma enhanced chemical vapour deposition (PECVD). Tetravinylsilane (TVS) and its mixtures with argon and oxygen were used to deposit films on both planar substrates and fibre bundles. Main characterisation techniques were employed to study the topography of films, namely atomic force microscopy (AFM). Their mechanical properties were studied through nanoindentation; the nanoscratch test was used to assess the film adhesion to the substrate. Other analysed properties were internal stress and friction coefficient. The particular attention was paid to the work of adhesion and its determination. This knowledge was further applied to the preparation of surface treatments of glass fibres and, subsequently, polymer composites. Those were tested using the push-out test and the short beam shear test. Based on the results, the effects of deposition conditions and the relationships between the studied properties and quantities were determined.

Page generated in 0.092 seconds