• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Multibody Dynamics Approach to the Modeling of Friction Wedge Elements for Frieght Train Suspensions

Steets, Jennifer Maria 07 June 2007 (has links)
This thesis presents a theoretical application of multibody dynamics with unilateral contact to model the interaction of the damping element in a freight train suspension, the friction wedge, with the bolster and the side frame. The objective of the proposed approach is to produce a stand-alone model that can better characterize the interaction between the bolster, the friction wedge, and the side frame subsystems. The new model allows the wedge four degrees of freedom: vertical displacement, longitudinal (between the bolster and the side frame) displacement, pitch (rotation about the lateral axis), and yaw (rotation about the vertical axis). The new model also allows for toe variation. The stand-alone model shows the capability of capturing dynamics of the wedge which were not possible to simulate using previous models. The inclusion of unilateral contact conditions is integral in quantifying the behavior during lift-off and the stick-slip phenomena. The resulting friction wedge model is a 3D, dynamic, stand-alone model of a bolster-friction wedge-side frame assembly. The new stand-alone model was validated through simulation using simple inputs. The dedicated train modeling software NUCARS® has been used to run simulations with similar inputs and to compare — when possible — the results with those obtained from the new stand-alone MATLAB friction wedge model. The stand-alone model shows improvement in capturing the transient dynamics of the wedge better. Also, it can predict not only normal forces going into the side frame and bolster, but also the associated moments. Significant simulation results are presented and the main differences between the current NUCARS® models and the new stand-alone MATLAB models are highlighted. / Master of Science
2

Advanced Multibody Dynamics Modeling of the Freight Train Truck System

Ballew, Brent Steven 05 June 2008 (has links)
Previous work in the Railway Technology Laboratory at Virginia Tech focused on better capturing the dynamics of the friction wedge, modeled as a 3D rigid body. The current study extends that work to a half-truck model treated as an application of multibody dynamics with unilateral contact to model the friction wedge interactions with the bolster and the sideframe. The half-truck model created in MATLAB is a 3D, dynamic, multibody dynamics model comprised of four rigid bodies: a bolster, two friction wedges, and a sideframe assembly. The model allows each wedge four degrees of freedom: vertical displacement, longitudinal displacement (between the bolster and sideframe), pitch (rotation around the lateral axis), and yaw (rotation around the vertical axis). The bolster and the sideframe have only the vertical degree of freedom. The geometry of these bodies can be adjusted for various simulation scenarios. The bolster can be initialized with a pre-defined yaw (rotation around the vertical axis) and the sideframe may be initialized with a pre-defined pitch/toe (rotation around the lateral axis). The multibody dynamics half-truck model simulation results have been compared with results from NUCARS®, an industry standard train modeling software, for similar inputs. The multibody dynamics models have also been extended to a variably damped full-truck model and a variably damped half-truck warping model. These models were reformulated to react dynamically to simulated truck warp inputs. The ability to better characterize truck warping properties can prevent train roll over and derailments from truck hunting. In a quarter-truck variably damped configuration the effects of a curved wedge surface has also been explored. Actual friction wedges have surfaces which are slightly curved, this iteration in the multibody dynamics friction wedge modeling attempts to draw one step closer to actual friction wedge geometry. This model lays the ground work for a contact dependant wedge wearing model based on material properties and tribology. / Master of Science

Page generated in 0.0452 seconds