• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Vehicle Stability Control Strategy for a Hybrid Electric Vehicle Equipped With Axle Motors

Bayar, Kerem 22 July 2011 (has links)
No description available.
2

Design And Simulation Of An Integrated Active Yaw Control System For Road Vehicles

Tekin, Gokhan 01 February 2008 (has links) (PDF)
Active vehicle safety systems for road vehicles play an important role in accident prevention. In recent years, rapid developments have been observed in this area with advancing technology and electronic control systems. Active yaw control is one of these subjects, which aims to control the vehicle in case of any impending spinning or plowing during rapid and/or sharp maneuver. In addition to the development of these systems, integration and cooperation of these independent control mechanisms constitutes the current trend in active vehicle safety systems design. In this thesis, design methodology and simulation results of an active yaw control system for two axle road vehicles have been presented. Main objective of the yaw control system is to estimate the desired yaw behavior of the vehicle according to the demand of the driver and track this desired behavior accurately. The design procedure follows a progressive method, which first aims to design the yaw control scheme without regarding any other stability parameters, followed by the development of the designed control scheme via taking other stability parameters such vehicle sideslip angle into consideration. A two degree of freedom vehicle model (commonly known as &ldquo / Bicycle Model&rdquo / ) is employed to model the desired vehicle behavior. The design of the controller is based on Fuzzy Logic Control, which has proved itself useful for complex nonlinear design problems. Afterwards, the proposed yaw controller has been modified in order to limit the vehicle sideslip angle as well. Integration of the designed active yaw control system with other safety systems such as Anti-Lock Braking System (ABS) and Traction Control System (TCS) is another subject of this study. A fuzzy logic based wheel slip controller has also been included in the study in order to integrate two different independent active systems to each other, which, in fact, is a general design approach for real life applications. This integration actually aims to initiate and develop the integration procedure of the active yaw control system with the (ABS). An eight degree of freedom detailed vehicle model with nonlinear tire model is utilized to represent the real vehicle in order to ensure the validity of the results. The simulation is held in MATLAB/Simulink environment, which has provided versatile design and simulation capabilities for this study. Wide-ranging simulations include various maneuvers with different road conditions have been performed in order to demonstrate the performance of the proposed controller.
3

Experimentální metodologie měřicího řetězce / Experimental methodology of measuring

Lojková, Lea January 2011 (has links)
This work is focused on the development of a thorough study about ISO standards focused on the vehicle dynamics, standardized tests of vehicle dynamics and measured variables that allow us to describe and model the behaviour of riding vehicles properly. In the Appendix A of the thesis, there is a list of all known ISO standards dealing with given topic. The standard ISO 15037-1 Road vehicles – Vehicle dynamics test methods, Part 1: General conditions for passenger cars is described in detail, including the forms for test reports and the Appendix C and D. In the thesis, there is also described a model of minimal needed measuring system that is still in good accordance with the standard ISO 15037-1 and fulfills all its requirements. Detailed description of all used sensors that are used to measure required variables is given, as well as a short description of all sensors that are used for measurement of other variables. After that, measurement abilities of the instrumentation of measuring system RIO used in ÚADI FSI Brno is compared and confronted with requirements given by the standard, to see, if all given criteria are properly fulfilled. Because of the fact that standard-given criteria are quite mild, while the equipment of the faculty is high-level technology, mostly made directly for measuring of dynamic parameters of the vehicles, including racing vehicles, the system is in full accordance with the standard ISO 15037-1.

Page generated in 0.0652 seconds