• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • Tagged with
  • 13
  • 13
  • 13
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Návrh koncepce napěťového konvejoru a jeho aplikační možnosti / Voltage Conveyor Conception Design and Its Applications

Minarčík, Martin January 2009 (has links)
This doctoral thesis deals with a voltage conveyor as a new active element for an analog signal processing. Various types of the voltage conveyors have been defined as a dual active elements to current conveyors based on a duality principle. Conception of a new active element that can supply all types of the voltage conveyors have been proposed. The active element has been named an universal voltage conveyor – UVC. A voltage follower is a basic building block of the UVC. The well-known circuit realization of the voltage follower comes from four transconductance amplifiers with key parameters (voltage transfer and output resistance) derived from relative accuracy of used transconductance amplifiers has been used by UVC fabrication. A new circuit realization of the voltage follower comes from three transconductance amplifiers with key parameters also derived from relative accuracy of used transconductance amplifiers has been designed. Further the doctoral thesis deals with a frequency filter with the voltage conveyors design using signal flow graphs. Various graphs of the voltage conveyors comes from the various circuit analysis methods with non-regular active elements have been created. A basic graph of the voltage conveyor has been designed with help of a known controlled sources graphs. This graph have been used to design of multifunctional frequency filters, filters with high input and low output impedance and controlled frequency filters. A design procedure have been created so that in specific step of the frequency filter design the basic graph of the voltage conveyor could be extended to graph of any type of the voltage conveyor. Thereby a practical usage of various types of the voltage conveyors has been finding out. Further a new method of frequency filter design based on expanding of the signal flow has beenproposed.
12

Syntéza a analýza obvodů s moderními aktivními prvky / Synthesis and Analysis of Circuits with Modern Active Elements

Koton, Jaroslav January 2009 (has links)
The dissertation thesis deals with the synthesis and design of active frequency filters using current (CC) and voltage (VC) conveyors, or current active elements CMI (Current Mirror and Inverter), MCMI (Multi-output CMI) and PCA (Programmable Current Amplifier). As introduction, these active elements are described as suitable for the design of the circuits working in the voltage-, current,- ,and mixed-mode, or in pure current-mode speaking about the current active elements. The new frequency filter structures presented in this thesis using the above mentioned active elements were designed by the generalized autonomous circuit method, transformation cells and signal flow-graph theory. The generalized autonomous circuit method is based on full admittance network to which generalized active elements are connected. The described admittance networks can be used for other active elements. The next method is based on the transformation cells that subsequently are used for the design of synthetic elements with higher-order imittance. Original conditions for the design of such blocks are given that lead to maximal simplicity of the final structure with minimal number of passive and active elements. For effective usage of another method utilizing signal flow-graphs, new reduced graphs of chosen active elements are given. Their usage leads to direct function blocks synthesis with required properties. The functionality and behavior of chosen circuit solutions have been verified by analyses in simulation programs. The active elements were simulated by the universal current conveyor (UCC) or universal voltage conveyors (UVC) that were designed at the FEEC, BUT in cooperation with AMI Semiconductor Design Centre Brno with the CMOS 0.35 m technology. These active elements have been also used for the realization of chosen filter structures. The experimental measurements were performed in the in the frequency range 10 KHz to 100 MHz.
13

Aktivní kmitočtové filtry pro vyšší frekvence / Active Frequency Filters for Higher Frequencies

Fröhlich, Lubomír January 2014 (has links)
This thesis deals with the synthesis and optimization of frequency analogue filters with modern active elements usable for higher frequencies. The thesis is divided into three parts, the first part deals with the problematic concerning Leap-Frog combined ARC structure. Due to a difficult design, this method is not described in a detail and used in practice, although it shows e.g. low sensitivity. Firstly, a complete analysis of individual filters was made (for and T endings) and consequently these findings were used during implementation of this method to NAF program. Finally, samples of real filters were realized (for verification of functioning and correct design). Another very interesting topic concerning filters is usage of coupled band-pass for small bandwidth, where it is necessary to solve the problems concerning ratio of building elements values, but also price, quality, size of coils, sensitivity, Q factors, coefficients etc. That is why in practice a coil is very often substituted with other equivalent lossy and lossless blocks which create ARC filters structure. The design and the possibility of usage of lossy grounded elements were described here (such as synthetic inductors, frequency dependent negative resistor). Some parts of the design are individual computer sensitivity analysis, setting of usage and quality comparison of individual lossy grounded blocks. Besides, a program for these elements was created, it is useful for a quick design and depiction of transfer characteristics. The third part deals with the usage of tuning universal filters consisting three or more operational amplifiers, which secures its universality and possibility to create different kinds of transfer characteristic. In practice, Akerberg - Mossberg and Kerwin - Huelsman - Newcomb are the most used types of filters. These were also compared with less common universal filters. In the end, the possibility of digital tuning of universal filter with the help of digital potentiometers for filters of 10th order and frequency around 1 MHz was shown.

Page generated in 0.0847 seconds