• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CONTRIBUTION OF A SPERM PROTEIN, PAWP, TO THE SIGNAL TRANSDUCT PATHWAY DURING VERTEBRATE FERTILIZATION

Qin, Zheng 17 January 2008 (has links)
PAWP, postacrosomal sheath WW domain binding protein, is a novel sperm protein identified as a candidate sperm borne, oocyte-activating factor (SOAF). PAWP induces both early and later egg activation events including meiotic resumption, pronuclear formation and egg cleavage. Based on the fact that calcium increase is universally accepted as the sole requirement for egg activation, we hypothesized that PAWP is an upstream regulator of the calcium signaling pathway during fertilization. Intracellular calcium increase was detected by two-photon laser scanning fluorescence microscopy following microinjection of recombinant PAWP into Xenopus oocytes, bolstering our hypothesis and suggesting the involvement of a novel PAWP-mediated signaling pathway during fertilization. The N-terminal of PAWP shares a high homology to WW domain binding protein while the C-terminal half contains a functional PPXY motif, which allows it to interact with group I WW domain proteins. These structural considerations together with published data indicating that PPXY synthetic peptide derived from PAWP inhibits ICSI-induced fertilization led to the hypothesis that PAWP triggers egg activation by binding to a group I WW domain protein in the oocyte. By far-Western analysis of oocyte cytoplasmic fraction, PAWP was found to bind to a 52 kDa protein. The competitive inhibition studies with PPXY synthetic peptide, WW domain constructs, and their point mutants demonstrated that the interaction between PAWP and its binding partner is specifically via the PPXY-WW domain module. The 52 kDa protein band crossreacted with antibodies against group I WW domain protein YAP in Western blot assay, indicating that this 52 kDa PAWP binding partner is either YAP or a YAP-related protein. In addition, the far-Western competitive inhibition studies with recombinant GST fusion protein YAP and another WW domain-containing protein, TAZ, demonstrated that the binding of PAWP to its binding partner was significantly reduced by TAZ, providing evidence that TAZ could be the 52 kDa protein candidate. Mass spectrometry was employed to identify this PAWP binding partner candidate. However, due to the low abundance of the candidate protein and the complexity of the sample, several strategies are still needed to enrich this protein. This study correlates PAWP induced meiotic resumption and calcium efflux at fertilization and uncovers a 52 kDa candidate WW domain protein in the oocyte cytoplasm that most likely interacts with PAWP to trigger egg activation. / Thesis (Master, Anatomy & Cell Biology) -- Queen's University, 2008-01-17 00:31:13.353 / CIHR

Page generated in 0.0847 seconds