• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calcium Signaling Mechanisms Mediate Clock-Controlled ATP Gliotransmission among Immortalized Rat SCN2.2 Cell Cultures

Burkeen, Jeffrey Franklin 2009 August 1900 (has links)
The hypothalamus is an integral part of the brain's regulation of mammalian physiology and behavior. Among many functions, this regulatory center activates the sympathetic nervous system, maintains appropriate body temperature, controls food intake, and controls release of hormones from the pituitary gland. Deep within the hypothalamus lie a paired cluster of cells, the suprachiasmatic nuclei (SCN), which function as the chief circadian pacemaker. The goal of the present thesis research was to study rhythmically controlled ATP gliotransmission. I used an immortalized SCN2.2 hypothalamic cell line to determine the mechanism by which ATP signaling is regulated in this context. Additionally, this research aimed to elucidate if clock-controlled ATP gliotransmission is fundamentally distinct from stimulus-evoked calcium-dependent mechanisms that regulate intercellular ATP signaling among astrocytes. In this thesis, I show that there are multiple ATP signaling mechanisms present among SCN2.2 cells. cAMP-dependent signaling mediates clock-controlled ATP accumulation but not stimulus-evoked ATP signaling. In addition, pharmacological studies suggest that disparate purinergic receptor-mediated mechanisms are involved in the regulation of clock-controlled versus stimulus-evoked ATP signaling. Rhythmic accumulation of ATP in SCN2.2 cultures is modulated by calcium-dependent processes. Peaks in ATP accumulation coincide with elevated mitochondrial calcium levels, while troughs in ATP accumulation coincide with periods of high cytosolic calcium levels, suggesting a possible mechanistic link between circadian shifts in intracellular calcium handling and ATP handling in SCN2.2 cells. Clock-controlled ATP accumulation in SCN2.2 cells is not a by-product of rhythmic cell cycle or rhythmic cell death. Overall, my research suggests that the ATP accumulation rhythm in SCN2.2 cells is likely an output of the biological clock, mediated by astrocytic calcium signaling processes, and not an output of cell division or cell death. Estimation of ATP accumulation in SCN2.2 cultures at peak time points suggests that clock-controlled ATP release is critical to the function of astrocytes in the mammalian brain, perhaps in the regulation of brain metabolism, the regulation of sleep/wake physiology, or the integration of both.
2

Moraxella Catarrhalis Induces Mast Cell Activation and Nuclear Factor Kappab-Dependent Cytokine Synthesis

Krishnaswamy, G., Martin, R., Walker, E., Li, C., Hossler, F., Hall, K., Chi, D. S. 01 January 2003 (has links)
Human mast cells are often found perivascularly and at mucosal sites and may play crucial roles in the inflammatory response. Recent studies have suggested a prominent role for mast cells in host defense. In this study, we analyzed the effects of a common airway pathogen, Moraxella catarrhalis and a commensal bacterium, Neiserria cinerea, on activation of human mast cells. Human mast cell leukemia cells (HMC-1) were activated with either phorbol myristate acetate (PMA) and calcium ionophore or with varying concentrations of heat-killed suspensions of bacteria. Supernatants were assayed for the cytokines interleukin-4 (IL-4), granulocyte macrophage colony stimulating factor (GM-CSF), IL-6, IL-8, IL-13 and monocyte chemotactic protein-1 (MCP-1). Nuclear proteins were isolated and assayed by electrophoretic mobility shift assay (EMSA) for nuclear factor kappaB (NF-κB) nuclear binding activity. In some experiments, NF-κB inhibitor, Bay-11 was added to determine functional significance. Both M. catarrhalis and N. cinerea induced mast cell activation and selective secretion of two key inflammatory cytokines, IL-6 and MCP-1. This was accompanied by NF-κB activation. Neither spun bacterial supernatants nor bacterial lipopolysaccharide induced cytokine secretion, suggesting need for direct bacterial contact with mast cells. Scanning electron microscopy revealed active aggregation of bacteria over mast cell surfaces. The NF-κB inhibitor, Bay-11, inhibited expression of MCP-1. These findings suggest the possibility of direct interactions between human mast cells and common bacteria and provide evidence for a novel role for human mast cells in innate immunity.

Page generated in 0.1037 seconds