1 |
Méta-optimisation pour la calibration automatique de modèles énergétiques bâtiment pour le pilotage anticipatif / Meta-optimisation for automatic calibration for building energetic models in order to proceed to anticipative managementLe Mounier, Audrey 29 June 2016 (has links)
Face aux enjeux climatiques actuels, le secteur bâtiment est encouragé à réduire sa consommation énergétique tout en préservant le confort des occupants. C’est dans ce contexte que s’inscrit le projet ANR PRECCISION qui vise au développement d’outils et de méthodes pour la gestion énergétique optimisée des bâtiments qui nécessitent l’utilisation de modèles thermiques dynamiques. Les travaux de thèse, effectués entre le G2Elab et le G-SCOP, se sont focalisés sur les problématiques liées à l’estimation paramétrique de ces modèles. En effet, les incertitudes liées aux phénomènes mal maîtrisés et la nature des modèles rendent le calibrage des paramètres des modèles délicat. Cette procédure complexe n’est à ce jour pas systématisable : les modèles auto-regressifs ont une faible capacité d'extrapolation car leur structure est inadaptée, tandis que les modèles physiques sont non-linéaires par rapport à de nombreux paramètres : les estimations conduisent à des optimums locaux fortement dépendant de l'initialisation. Pour lever ce verrou, plusieurs approches ont été explorées à partir de modèles physiques adaptés pour lesquels des études sur l’identifiabilité ont été menées sur une plateforme expérimentale : PREDIS MHI. Différentes stratégies d'optimisation sont alors proposées visant à déterminer les paramètres qui peuvent être recalés. La première approche repose sur une analyse a priori de la dispersion paramétrique, la seconde repose sur une procédure de méta-optimisation qui détermine dynamiquement, au fur et à mesure d'une séquence d'optimisations, les paramètres à recaler. Les résultats sont analysés et comparés à diverses approches (modèles universels, identification « naïve » de tous les paramètres d’un modèle physique, algorithme génétique, …) à travers différents cas d'application. / In order to tackle the actual climate issues, the building field is encouraged to reduce his energetic consumption without changing the occupant’s comfort. In this context, the aim of the ANR PRECCISION project is to develop tools and methods for energetic management of the buildings which needs the use of dynamical thermal models. The PHD works, realise between the G2Elab and the G-SCOP, was focused on models parametric estimation issues. Indeed, uncertainties due to unknown phenomena and the nature of models lead to difficulties for the calibration of the models. Nowadays, this complex procedure is still not automatable: auto-regressive models have a low capacity to extrapolate because of their inadequate structure, whereas the physical models are non-linear regarding many parameters: estimations lead towards local optimums which highly depend on the initial point. In order to eliminate these constraints, several approaches have been explored with physical models adapted for which identifiability studies have been reached on an experimental platform: PREDIS MHI. Different optimisation strategies will be proposed in order to determine the parameters which can be estimated. The first approach uses an analyse a priori of the parametric dispersion, the second one use a meta optimisation which dynamicaly determined as the optimisation sequence, the parameters which can be readjusted. The results are analysed and compared to several approaches (universal models, “simple” identification of all the parameters of a physical model, genetic algorithm …) in different application cases.
|
2 |
Méthodologie et développement de solutions pour la sécurisation des circuits numériques face aux attaques en tensions / Methodology and design of solutions to secure digital circuits against power attacksGomina, Kamil 11 September 2014 (has links)
Les applications grand public comme la téléphonie mobile ou les cartes bancaires manipulent des données confidentielles. A ce titre, les circuits qui les composent font de plus en plus l'objet d'attaques qui présentent des menaces pour la sécurité des données. Les concepteurs de systèmes sur puce (SoC) doivent donc proposer des solutions sécurisées, tout en limitant le coût et la complexité globale des applications. L’analyse des attaques existantes sur les circuits numériques nous a orienté vers celles se basant sur la tension d'alimentation, dans des nœuds technologiques avancés.Dans un premier temps, nous avons déterminé la signature électrique d’un circuit en phase de conception. Pour cela, un modèle électrique a été proposé, prenant en compte la consommation en courant et la capacité de la grille d'alimentation. L'extraction de ces paramètres ainsi que l'évaluation du modèle sont présentées. L’utilisation de ce modèle a permis de mesurer la vulnérabilité d’un circuit mais aussi d’évaluer quantitativement des contremesures, notamment celle utilisant des capacités de découplage. Ensuite, l’étude se consacre à l’injection de fautes par impulsions de tension d’alimentation. Les mécanismes d’injection de fautes sur des circuits numériques ont été étudiés. Dès lors, des solutions de détection d’attaques ont été proposées et évaluées à la fois en simulation et par des tests électriques sur circuit. Les résultats ont permis de confirmer les analyses théoriques et la méthodologie utilisée.Ce travail a ainsi montré la faisabilité de solutions à bas coût contre les attaques actives et passives en tension, utilisables dans le cadre d’un développement industriel de produits. / General use products as mobile phones or smartcards manipulate confidential data. As such, the circuits composing them are more and more prone to physical attacks, which involve a threat for their security. As a result, SoC designers have to develop efficient countermeasures without increasing overall cost and complexity of the final application. The analysis of existing attacks on digital circuits leads to consider power attacks, in advanced technology nodes.First of all, the power signature of a circuit was determined at design time. To do so, an electrical model was suggested based on the current consumption and the overall power grid capacitance. The methodology to extract these parameters, as well as the evaluation of the model are presented. This model allows designers to anticipate information leakage at design time and to quantify the protection of countermeasures, as the use of integrated decoupling capacitors. Then, the study was dedicated to power glitch attacks. The different fault injection mechanisms were analyzed in details. From then on, a set of detection circuits were suggested and evaluated at design time and on silicon by electrical tests. Both the theoretical analysis and the given methodology were confirmed by the test campaigns.This work demonstrated that the design of low-cost solutions against passive and active power attacks can be achieved, and used in a large scale product development.
|
Page generated in 0.0694 seconds