• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of pretreatment options for composite fouling of reverse osmosis membranes used in water treatment and production

Mustafa, Ghulam Mohammad, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Most common inorganic foulants in RO processes operating on brackish water are calcium carbonate, calcium sulphate and silica. However, silica fouling is the recovery limiting factor in RO system. Silica chemistry is complex and its degree of fouling strongly depends on the silica solubility and its polymerization under different operating conditions of RO process. In several studies carried out in batch and dynamic tests, the presence of polyvalent cations and supersaturation of silica in solutions were found to be the important factors (apart from pH and temperature) that affected the rate of silica polymerization and its induction period. Agitation did increased silica solubility; however, its effect was negligible in presence of polyvalent cations. Alkalization of water solution by coagulants particularly sodium hydroxide was found suitable for silica removal during pretreatment. The presence of magnesium in solution played a key role in silica removal mostly by the mechanism of adsorption to the metal hydroxide. The options of inline mixing (high agitation) for 5 to 10 minutes and microfiltration before RO were found suitable for silica pretreatment. During dynamic tests, the most dominant mechanism for salt deposition (mostly CaSO4) was particulate type in high concentration water solution; while crystallization fouling was the prevailing mechanism of deposition (mostly CaCO3 and silica) in low concentration solution. Silica showed significant effect on size and shape of inorganic salt crystals during coprecipitation. Moreover, the presence of common antiscalants promoted silica fouling. This important finding recommends an extra caution while using antiscalants in case feed water contains silica to a level that can attain saturation near membrane during RO process. A model was developed to predict the silica fouling index (SFI) based on the experimental data for induction period of silica polymerization. The model takes into account the effect of polyvalent cations and concentration polarization near membrane during RO process. It provides a conservative basis for predicting the maximum silica deposition in RO process at the normal operating conditions. A generalised correlation, which was developed for determination of the mass transfer coefficient in RO process, incorporated the effect of temperature change that is usually not considered in previous correlations. A correlation for reduction of silica content in feed water, down to a safe limit of 15 ppm for RO process, was also formulated and validated by the experimental results.
2

Formation of Silica Microstructures between Inundated Stressed Silica Grains: Effect on Intergranular Tensile Strength

Guo, Rui January 2014 (has links)
<p>Laboratory tests on microscale are reported in which amorphous silica grains were compressed in a liquid environment, namely in solutions with different silica ion concentrations for up to four weeks. Such an arrangement represents an idealized representation of two sand grains. The grain surfaces and asperities were examined in Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) for fractures, silica polymer growth, and polymer strength. Single chains of silica polymers are found to have a failure pulling force of 330 - 450 nN. </p><p>A chain of observations are reported for the first time, using Pneumatic Grain Indenter and Grain Indenter-Puller apparatuses, confirming a long-existing hypothesis that a stressed contact with microcracks generates dissolved silica in the contact (asperity) vicinity, which eventually polymerizes, forming a structure between the grains on a timescale in the order of weeks. Such structure exhibits intergranular tensile force of 1 - 1.5 mN when aged in solutions containing silica ion concentrations of 200- to 500 ppm. Stress appears to accelerate the generation of silica polymers around stressed contact regions, so does mica-silica contacts. The magnitude of intergranular tensile force is 2 to 3 times greater than that of water capillary effect between grains.</p> / Dissertation
3

The study of pretreatment options for composite fouling of reverse osmosis membranes used in water treatment and production

Mustafa, Ghulam Mohammad, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Most common inorganic foulants in RO processes operating on brackish water are calcium carbonate, calcium sulphate and silica. However, silica fouling is the recovery limiting factor in RO system. Silica chemistry is complex and its degree of fouling strongly depends on the silica solubility and its polymerization under different operating conditions of RO process. In several studies carried out in batch and dynamic tests, the presence of polyvalent cations and supersaturation of silica in solutions were found to be the important factors (apart from pH and temperature) that affected the rate of silica polymerization and its induction period. Agitation did increased silica solubility; however, its effect was negligible in presence of polyvalent cations. Alkalization of water solution by coagulants particularly sodium hydroxide was found suitable for silica removal during pretreatment. The presence of magnesium in solution played a key role in silica removal mostly by the mechanism of adsorption to the metal hydroxide. The options of inline mixing (high agitation) for 5 to 10 minutes and microfiltration before RO were found suitable for silica pretreatment. During dynamic tests, the most dominant mechanism for salt deposition (mostly CaSO4) was particulate type in high concentration water solution; while crystallization fouling was the prevailing mechanism of deposition (mostly CaCO3 and silica) in low concentration solution. Silica showed significant effect on size and shape of inorganic salt crystals during coprecipitation. Moreover, the presence of common antiscalants promoted silica fouling. This important finding recommends an extra caution while using antiscalants in case feed water contains silica to a level that can attain saturation near membrane during RO process. A model was developed to predict the silica fouling index (SFI) based on the experimental data for induction period of silica polymerization. The model takes into account the effect of polyvalent cations and concentration polarization near membrane during RO process. It provides a conservative basis for predicting the maximum silica deposition in RO process at the normal operating conditions. A generalised correlation, which was developed for determination of the mass transfer coefficient in RO process, incorporated the effect of temperature change that is usually not considered in previous correlations. A correlation for reduction of silica content in feed water, down to a safe limit of 15 ppm for RO process, was also formulated and validated by the experimental results.
4

Modeling the Self-Assembly of Ordered Nanoporous Materials

Jin, Lin 01 September 2012 (has links)
Porous materials have long been a research interest due to their practical importance in traditional chemical industries such as catalysis and separation processes. The successful synthesis of porous materials requires further understanding of the fundamental physics that govern the formation of these materials. In this thesis, we apply molecular modeling methods and develop novel models to study the formation mechanism of ordered porous materials. The improved understanding provides an opportunity to rational control pore size, pore shape, surface reactivity and may lead to new design of tailor-made materials. To attain detailed structural evolution of silicate materials, an atomistic model with explicitly representation of silicon and oxygen atoms is developed. Our model is based on rigid tetrahedra (representing SiO4) occupying the sites of a body centered cubic (bcc) lattice. The model serves as the base model to study the formation of silica materials. We first carried out Monte Carlo simulations to describe the polymerization process of silica without template molecules starting from a solution of silicic acid in water at pH 2. We predicted Qn evolutions during silica polymerization and good agreement was found compared with experimental data, where Qn is the fraction of Si atoms with n bridging oxygens. The model captures the basic kinetics of silica polymerization and provides structural evolution information. Next we generalize the application of this atomic lattice model to materials with tetrahedral (T) and bridging (B) atoms and apply parallel tempering Monte Carlo methods to search for ground states. We show that the atomic lattice model can be applied to silica and related materials with a rich variety of structures including known chalcogenides, zeolite analogs, and layered materials. We find that whereas canonical Monte Carlo simulations of the model consistently produce the amorphous solids studied in our previous work, parallel tempering Monte Carlo gives rise to ordered nanoporous solids. The utility of parallel tempering highlights the existence of barriers between amorphous and crystalline phases of our model. The role of template molecules during synthesis of ordered mesoporous materials was investigated. Implemented surfactant lattice model of Larson, together with atomic tetrahedral model for silica, we successfully modeled the formation of surfactant-templated mesoporous silica (MCM-41), with explicit representation of silicic acid condensation and surfactant self-assembly. Lamellar and hexagonal mesophases form spontaneously at different synthesis conditions, consistent with published experimental observations. Under conditions where silica polymerization is negligible, reversible transformation between hexagonal and lamellar phases were observed by changing synthesis temperatures. Upon long-time simulation that allows condensation of silanol groups, the inorganic phases of mesoporous structures were found with thicker walls that are amorphous and lack of crystallinity. Compared with bulk amorphous silica, the wall-domain of mesoporous silicas are less ordered withlarger fractions of three- and four-membered rings and wider ring-size distributions. It is the first molecular simulation study of explicit representations of both silicic acid condensation and surfactant self-assembly.

Page generated in 0.1257 seconds