• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of physical and chemical interactions during etching of silicon in dual frequency capacitively coupled HBr/NF3 gas discharges

Reinicke, Marco 21 July 2009 (has links)
High aspect ratio silicon etching used for DRAM manufacturing still remains as one of the biggest challenges in semiconductor fabrication, requiring well understood and characterized process fundamentals. In this study, physical and chemical interactions during etching silicon in capacitively coupled plasma discharges were investigated in detail for different HBr/NF3 mixed chemistries for single frequency as well as dual frequency operation and medium discharge pressures inside an industrial MERIE CCP reactor typically used for DRAM fabrication. Utilization of the dual frequency concept for separate control of ion energy and ion flux, as well as the impact on discharge properties and finally on etching at relevant substrate surfaces were studied systematically. The complex nature of multi frequency rf sheaths was both analyzed experimentally by applying mass resolved ion energy analysis, and from simulation of ion energy distributions by using a Hybrid Plasma Sheath Model. Discharge composition and etch processes were investigated by employing standard mass spectrometry, Appearance Potential Mass Spectrometry, Quantum Cascade Laser Absorption Spectroscopy, rf probe measurements, gravimetry and ellipsometry. An etch model is developed to explain limitations of silicon etching in HBr/NF3 discharges to achieve highly aniostropic etching. / Siliziumätzen mit hohen Aspektverhältnissen zur Herstellung von DRAM-Speicherstrukturen stellt nach wie vor eine der größten Herausforderungen in der Halbleiterherstellung dar und erfordert ein grundlegendes Prozessverständnis. Diese Studie beinhaltet eine umfassende und detaillierte Untersuchung physikalischer und chemischer Wechselwirkungen von Siliziumätzprozessen in kapazitiv gekoppelten HBr/NF3-Gasentladungen in einem kommerziellen, typischerweise für die DRAM-Fertigung eingesetzten MERIE CCP Reaktor mit Ein- und Zweifrequenzanregung bei mittleren Entladungsdrücken. Die Anwendung eines Zweifrequenzkonzeptes zur separaten Kontrolle von Ionenenergie und Ionenstromdichte, als auch deren Einfluss auf die Entladungseigenschaften und letztendlich auf das Ätzverhalten auf relevanten Substratoberflächen wurden systematisch untersucht. Die komplexe Natur von mehrfrequenzangeregten HF-Randschichten wurde sowohl experimentell über eine Anwendung von massenaufgelöster Ionenenergieanalyse als auch rechnerisch über Simulationen von Ionenenergieverteilungsfunktionen mit Hilfe eines hybriden Plasmarandschichtmodells analysiert. Gaszusammensetzungen verschiedener Entladungen und Ätzprozesse wurden mit Hilfe von Standard-Massenspektrometrie, Schwellwert-Massenspektrometrie, Quantenkaskaden-Laserabsorptionsspektroskopie, HF-Sondenmessungen, Gravimetrie und Ellipsometrie charakterisiert. Eine neuartige Modellvorstellung zum Siliziumätzen in HBr/NF3-Entladungsgemischen liefert eine plausible Erklärung für die Limitierung der Ätzrate zum Erreichen eines hoch anisotropen Ätzverhaltens.
12

Reactive replacement and addition of cations in bioclastic silica and calcite

Allan, Shawn Michael 05 May 2005 (has links)
Numerous organisms produce ornately detailed inorganic structures (often known as shells) with features on length scales from 50 nm to several centimeters. One class of such organisms are the diatoms; microscopic algae that form silica frustules. Another group of algae, the coccolithophorids, produce similar calcium carbonate structures. Over 100,000 species comprise these two classes of algae, every one of which is endowed with a unique cytoskeleton structure. Using various types of displacement reactions, the chemistry of the original structure can be modified to produce a new material. Magnesium vapor has been found to displace the silicon in diatom frustules to yield an MgO structure. The conversion has been reported at temperatures from 650°C to 900°C. In the current work, the conversion and processing of silica frustules to MgO was examined in depth. The effect of reaction temperature on grain size and extent of conversion was evaluated. With the goal of obtaining high purity MgO structures, various methods for removing the silicon products of reaction were investigated. Wet chemistry and high temperature vapor etches were evaluated. The MgO reaction served as an intermediate step in the production of magnesium tungstate diatoms, which were imbued with photoluminescent properties. Reactions were identified to allow the conversion of calcium carbonate (calcite) structures to alternative chemistries. Calcite sand-dollars were converted to calcium tungstate or calcium molybdate by aqueous solution chemistry. In this process, sand dollar tests (shells) and coccolithophore frustules were reacted with ammonium para-molybdate or ammonium para-tungstate. The reactions were evaluated for shape preservation, phase purity, and photoluminescence of the structures.
13

Technologie přípravy hlubokých struktur v submikronovém rozlišení / Submicron Structures with Deep Relief — Technology of Preparation

Matějka, Milan January 2017 (has links)
The dissertation thesis is focused on research and development in the field of microfabrication by the technology of electron beam lithography. In the first part of this work, the extensive study is conducted in the field of technology of electron beam lithography in terms of physical principles, writing strategies and resist materials. This is followed with description of physical principles of etching for the transfer of relief structures into substrates. The thesis describes innovative techniques in modelling, simulation, data preparation and optimization of manufacturing technology. It brings new possibilities to record deep binary or multilevel microstructures using electron beam lithography, plasma and reactive ion etching technology. Experience and knowledge in the large area of microlithography, plasma and anisotropic wet-etching of silicon have been capitalized to the design process of manufacturing of nano-patterned membranes. It was followed with practical verification and optimization of the microfabrication process.

Page generated in 0.3785 seconds